Jesús Molina-Muñoz, Andrés Mora-Valencia, Javier Perote
{"title":"Predicting carbon and oil price returns using hybrid models based on machine and deep learning","authors":"Jesús Molina-Muñoz, Andrés Mora-Valencia, Javier Perote","doi":"10.1002/isaf.1563","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Predicting carbon and oil prices is recently gaining relevance in the climate change literature. This is due to the fact that conventional energy market analysis and the design of mechanisms for climate change mitigation constitute key variables for artificial carbon markets. Yet, modelling non-linear effects in time series remains a major challenge for carbon and oil price forecasting. Hence, hybrid models seem to be appealing alternatives for this purpose. This study evaluates the performance of 12 hybrid models, which weigh results from random forest, support vector machine, autoregressive integrated moving average and the non-linear autoregressive neural network models. The weights are determined by (i) assuming equal weights, <span>(</span>ii) using a neural network to optimise individual weights and (iii) employing deep learning techniques. The findings of our work confirm the salient characteristics of modelling the non-linear effects of time series and the potential of hybrid models based on neural networks and deep learning in predicting carbon and oil price returns. Furthermore, the best results are obtained from hybrid models that combine machine learning and traditional econometric techniques as inputs, which capture the linear and non-linear effects of time series.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"31 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting carbon and oil prices is recently gaining relevance in the climate change literature. This is due to the fact that conventional energy market analysis and the design of mechanisms for climate change mitigation constitute key variables for artificial carbon markets. Yet, modelling non-linear effects in time series remains a major challenge for carbon and oil price forecasting. Hence, hybrid models seem to be appealing alternatives for this purpose. This study evaluates the performance of 12 hybrid models, which weigh results from random forest, support vector machine, autoregressive integrated moving average and the non-linear autoregressive neural network models. The weights are determined by (i) assuming equal weights, (ii) using a neural network to optimise individual weights and (iii) employing deep learning techniques. The findings of our work confirm the salient characteristics of modelling the non-linear effects of time series and the potential of hybrid models based on neural networks and deep learning in predicting carbon and oil price returns. Furthermore, the best results are obtained from hybrid models that combine machine learning and traditional econometric techniques as inputs, which capture the linear and non-linear effects of time series.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.