Research on the Validity of Bootstrap LM-Error Test in Spatial Random Effect Models

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-04 DOI:10.3390/axioms13060378
Tongxian Ren, Lin Xu, Zhengliang Ren
{"title":"Research on the Validity of Bootstrap LM-Error Test in Spatial Random Effect Models","authors":"Tongxian Ren, Lin Xu, Zhengliang Ren","doi":"10.3390/axioms13060378","DOIUrl":null,"url":null,"abstract":"Under the condition of non-classical distributed errors, the test for spatial dependence in spatial panel data models is still a problem waiting to be solved. In this paper, we apply the FDB (Fast Double Bootstrap) method to spatial panel data models to test spatial dependence. In order to research the validity of the Bootstrap LM-Error test in spatial random effect models under the condition that the error term obeys a normal distribution, heteroscedasticity, or time-series correlation, we construct Bootstrap LM-Error statistics and make use of Monte Carlo simulation from size distortion and power aspects to carry out our research. The Monte Carlo simulation results show that the asymptotic LM-Error test in the spatial random effects model has a large size of distortion when the error term disobeys classical distribution. However, the FDB LM-Error test can effectively correct the size distortion of the asymptotic test with the precondition that there is nearly no loss of power in the FDB test. Obviously, compared to the asymptotic LM-Error test, the FDB LM-Error test is a more valid method to test spatial dependence in a spatial random effects model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13060378","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Under the condition of non-classical distributed errors, the test for spatial dependence in spatial panel data models is still a problem waiting to be solved. In this paper, we apply the FDB (Fast Double Bootstrap) method to spatial panel data models to test spatial dependence. In order to research the validity of the Bootstrap LM-Error test in spatial random effect models under the condition that the error term obeys a normal distribution, heteroscedasticity, or time-series correlation, we construct Bootstrap LM-Error statistics and make use of Monte Carlo simulation from size distortion and power aspects to carry out our research. The Monte Carlo simulation results show that the asymptotic LM-Error test in the spatial random effects model has a large size of distortion when the error term disobeys classical distribution. However, the FDB LM-Error test can effectively correct the size distortion of the asymptotic test with the precondition that there is nearly no loss of power in the FDB test. Obviously, compared to the asymptotic LM-Error test, the FDB LM-Error test is a more valid method to test spatial dependence in a spatial random effects model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间随机效应模型中 Bootstrap LM-Error 检验的有效性研究
在非经典分布误差条件下,空间面板数据模型的空间依赖性检验仍是一个亟待解决的问题。本文将 FDB(Fast Double Bootstrap)方法应用于空间面板数据模型的空间依赖性检验。为了研究在误差项服从正态分布、异方差或时间序列相关的条件下,空间随机效应模型中 Bootstrap LM-Error 检验的有效性,我们构建了 Bootstrap LM-Error 统计量,并利用蒙特卡罗模拟从规模畸变和幂等方面进行了研究。蒙特卡罗模拟结果表明,当误差项不服从经典分布时,空间随机效应模型中的渐近 LM-Error 检验具有较大的失真规模。然而,FDB LM-Error 检验可以有效地纠正渐近检验的大小失真,前提条件是 FDB 检验几乎没有功率损失。显然,与渐近 LM 检验相比,FDB LM 检验是检验空间随机效应模型中空间依赖性的一种更有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1