B. Sionek, A. Szydłowska, M. Trząskowska, D. Kołożyn-Krajewska
{"title":"The Impact of Physicochemical Conditions on Lactic Acid Bacteria Survival in Food Products","authors":"B. Sionek, A. Szydłowska, M. Trząskowska, D. Kołożyn-Krajewska","doi":"10.3390/fermentation10060298","DOIUrl":null,"url":null,"abstract":"Lactic acid bacteria (LAB), due to their many advantageous features, have been utilized in food manufacturing for centuries. Spontaneous fermentation, in which LAB play a fundamental role, is one of the oldest methods of food preservation. LAB survival and viability in various food products are of great importance. During technological processes, external physicochemical stressors appear often in combinations. To ensure the survival of LAB, adjustment of optimal physicochemical conditions should be considered. LAB strains should be carefully selected for particular food matrices and the technological processes involved. The LAB’s robustness to different environmental stressors includes different defense mechanisms against stress, including the phenomenon of adaptation, and cross-protection. Recently established positive health effects and influence on human wellbeing have caused LAB to be some of the most desirable microorganisms in the food industry. A good understanding of LAB defense and adaptation mechanisms can lead to both optimization of food production and storage conditions, as well as to obtaining LAB strains with increased tolerance to stressors. Hopefully, as a result, the final food product with naturally present or added LAB can achieve outstanding quality and safety with health benefits that meet consumer expectations.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10060298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lactic acid bacteria (LAB), due to their many advantageous features, have been utilized in food manufacturing for centuries. Spontaneous fermentation, in which LAB play a fundamental role, is one of the oldest methods of food preservation. LAB survival and viability in various food products are of great importance. During technological processes, external physicochemical stressors appear often in combinations. To ensure the survival of LAB, adjustment of optimal physicochemical conditions should be considered. LAB strains should be carefully selected for particular food matrices and the technological processes involved. The LAB’s robustness to different environmental stressors includes different defense mechanisms against stress, including the phenomenon of adaptation, and cross-protection. Recently established positive health effects and influence on human wellbeing have caused LAB to be some of the most desirable microorganisms in the food industry. A good understanding of LAB defense and adaptation mechanisms can lead to both optimization of food production and storage conditions, as well as to obtaining LAB strains with increased tolerance to stressors. Hopefully, as a result, the final food product with naturally present or added LAB can achieve outstanding quality and safety with health benefits that meet consumer expectations.