The Skin–Brain Axis: From UV and Pigmentation to Behaviour Modulation

Anna A. Ascsillán, L. Kemény
{"title":"The Skin–Brain Axis: From UV and Pigmentation to Behaviour Modulation","authors":"Anna A. Ascsillán, L. Kemény","doi":"10.3390/ijms25116199","DOIUrl":null,"url":null,"abstract":"The skin–brain axis has been suggested to play a role in several pathophysiological conditions, including opioid addiction, Parkinson’s disease and many others. Recent evidence suggests that pathways regulating skin pigmentation may directly and indirectly regulate behaviour. Conversely, CNS-driven neural and hormonal responses have been demonstrated to regulate pigmentation, e.g., under stress. Additionally, due to the shared neuroectodermal origins of the melanocytes and neurons in the CNS, certain CNS diseases may be linked to pigmentation-related changes due to common regulators, e.g., MC1R variations. Furthermore, the HPA analogue of the skin connects skin pigmentation to the endocrine system, thereby allowing the skin to index possible hormonal abnormalities visibly. In this review, insight is provided into skin pigment production and neuromelanin synthesis in the brain and recent findings are summarised on how signalling pathways in the skin, with a particular focus on pigmentation, are interconnected with the central nervous system. Thus, this review may supply a better understanding of the mechanism of several skin–brain associations in health and disease.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"8 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijms25116199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The skin–brain axis has been suggested to play a role in several pathophysiological conditions, including opioid addiction, Parkinson’s disease and many others. Recent evidence suggests that pathways regulating skin pigmentation may directly and indirectly regulate behaviour. Conversely, CNS-driven neural and hormonal responses have been demonstrated to regulate pigmentation, e.g., under stress. Additionally, due to the shared neuroectodermal origins of the melanocytes and neurons in the CNS, certain CNS diseases may be linked to pigmentation-related changes due to common regulators, e.g., MC1R variations. Furthermore, the HPA analogue of the skin connects skin pigmentation to the endocrine system, thereby allowing the skin to index possible hormonal abnormalities visibly. In this review, insight is provided into skin pigment production and neuromelanin synthesis in the brain and recent findings are summarised on how signalling pathways in the skin, with a particular focus on pigmentation, are interconnected with the central nervous system. Thus, this review may supply a better understanding of the mechanism of several skin–brain associations in health and disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮肤-大脑轴:从紫外线和色素沉着到行为调节
皮肤-大脑轴被认为在多种病理生理状况中发挥作用,包括阿片类药物成瘾、帕金森病等。最近的证据表明,调节皮肤色素沉着的途径可能直接或间接地调节行为。相反,中枢神经系统驱动的神经和荷尔蒙反应也被证明可以调节色素沉着,例如在压力下。此外,由于黑色素细胞和中枢神经系统中的神经元共同起源于神经外胚层,某些中枢神经系统疾病可能因共同的调节因子(如 MC1R 变异)而与色素相关的变化有关。此外,皮肤的 HPA 类似物将皮肤色素沉着与内分泌系统联系在一起,从而使皮肤能够明显反映出可能的激素异常。本综述深入探讨了皮肤色素的产生和大脑中神经褐质的合成,并总结了皮肤信号通路(尤其是色素沉着)与中枢神经系统之间相互联系的最新研究成果。因此,这篇综述可以让人们更好地了解健康和疾病中皮肤与大脑之间的一些关联机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Regulatory Landscape of Dementia: Insights from Non-Coding RNAs Longitudinal Analysis of Mitochondrial Function in a Choline-Deficient L-Amino Acid-Defined High-Fat Diet-Induced Metabolic Dysfunction-Associated Steatohepatitis Mouse Model Molecular Force Sensors for Biological Application NRF2 Plays a Crucial Role in the Tolerogenic Effect of Ethyl Pyruvate on Dendritic Cells Current Novel Targeted Therapeutic Strategies in Multiple Myeloma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1