{"title":"Ensemble forecasting: A foray of dynamics into the realm of statistics","authors":"Jie Feng, Zoltan Toth, Jing Zhang, Malaquias Peña","doi":"10.1002/qj.4745","DOIUrl":null,"url":null,"abstract":"Uncertain quantities are often described through statistical samples. Can samples for numerical weather forecasts be generated dynamically? At a great expense, they can. With statistically constrained perturbations, a cloud of initial states is created and then integrated forward in time. By now, this technique has become ubiquitous in weather and climate research and operations. Ensembles are widely used, with demonstrated value. The atmosphere evolves in a multidimensional phase space. Does a cloud of ensemble solutions encompass the evolution of the real atmosphere? Theoretically, random perturbations in high‐dimensional spaces have negligible projection in any direction, including the error in the best estimate, therefore consistently degrading that. As the bulk of the perturbation variance lies in the null space of error, samples in multidimensional space do not contain reality. An evaluation suggests that initial and short‐range forecast error and ensemble perturbations are random draws from a high‐dimensional domain we call the subspace of possible error. Error in any initial condition is partly a result of stochastic observational and assimilation noise, while perturbations explore other, mostly independent directions from the subspace of possible error that may have resulted from other configurations of stochastic noise. What benefits may arise from the deterministic projection of such noise? Consistent with theoretical expectations, ensemble members consistently degrade the skill of the unperturbed forecast until medium range. The mean and all other products derived from ensembles suffer an 18‐hour loss in forecast Information. Since Information is a sufficient statistic, any rational user can benefit more from the unperturbed, than from an ensemble of weather forecasts. Furthermore, case‐dependent variations in the distribution or spread of ensembles have no impact on commonly used metrics. Can alternative, statistical applications provide comparable, or even higher‐quality probabilistic and other products, at the fraction of the cost of running an ensemble?","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4745","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Uncertain quantities are often described through statistical samples. Can samples for numerical weather forecasts be generated dynamically? At a great expense, they can. With statistically constrained perturbations, a cloud of initial states is created and then integrated forward in time. By now, this technique has become ubiquitous in weather and climate research and operations. Ensembles are widely used, with demonstrated value. The atmosphere evolves in a multidimensional phase space. Does a cloud of ensemble solutions encompass the evolution of the real atmosphere? Theoretically, random perturbations in high‐dimensional spaces have negligible projection in any direction, including the error in the best estimate, therefore consistently degrading that. As the bulk of the perturbation variance lies in the null space of error, samples in multidimensional space do not contain reality. An evaluation suggests that initial and short‐range forecast error and ensemble perturbations are random draws from a high‐dimensional domain we call the subspace of possible error. Error in any initial condition is partly a result of stochastic observational and assimilation noise, while perturbations explore other, mostly independent directions from the subspace of possible error that may have resulted from other configurations of stochastic noise. What benefits may arise from the deterministic projection of such noise? Consistent with theoretical expectations, ensemble members consistently degrade the skill of the unperturbed forecast until medium range. The mean and all other products derived from ensembles suffer an 18‐hour loss in forecast Information. Since Information is a sufficient statistic, any rational user can benefit more from the unperturbed, than from an ensemble of weather forecasts. Furthermore, case‐dependent variations in the distribution or spread of ensembles have no impact on commonly used metrics. Can alternative, statistical applications provide comparable, or even higher‐quality probabilistic and other products, at the fraction of the cost of running an ensemble?
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.