A collocated inversion of sources and early arrival waveforms for credible tomograms: Synthetic and field data examples

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Near Surface Geophysics Pub Date : 2024-06-03 DOI:10.1002/nsg.12312
Han Yu, Jing Li, Sherif Hanafy, Lulu Liu
{"title":"A collocated inversion of sources and early arrival waveforms for credible tomograms: Synthetic and field data examples","authors":"Han Yu, Jing Li, Sherif Hanafy, Lulu Liu","doi":"10.1002/nsg.12312","DOIUrl":null,"url":null,"abstract":"Waveform inversion is theoretically a powerful tool to reconstruct subsurface structures, but a usually encountered problem is that accurate sources are very rare, causing the computation to be unstable or divergent. This challenging practical problem, although sometimes ignored and even imperceptible, can easily create discrepancies in calculated shot gathers, which will then lead to wrong residuals that will be smeared back to the gradients, hence jeopardizing the inverted tomograms. For any real dataset, every shot gather corresponds to its unique source even if some gathers can be transformed alike after data processing. To resolve this problem, we propose a collocated inversion of sources and early arrival waveforms with the two submodules executing successively. Not only can this method reconstruct a decent source wavelet that approaches the ground truth, but also it can produce credible background tomograms with optimized sources. Part of the cycle skipping problems can also be mitigated because it avoids the trial and error experiments on various sources. Numerical tests on a synthetic and a land dataset validate the effectiveness of this method. Restrictions on initial sources or starting velocity models will be relaxed, and this method can be extended to any other applications for engineering or exploration purposes.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/nsg.12312","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Waveform inversion is theoretically a powerful tool to reconstruct subsurface structures, but a usually encountered problem is that accurate sources are very rare, causing the computation to be unstable or divergent. This challenging practical problem, although sometimes ignored and even imperceptible, can easily create discrepancies in calculated shot gathers, which will then lead to wrong residuals that will be smeared back to the gradients, hence jeopardizing the inverted tomograms. For any real dataset, every shot gather corresponds to its unique source even if some gathers can be transformed alike after data processing. To resolve this problem, we propose a collocated inversion of sources and early arrival waveforms with the two submodules executing successively. Not only can this method reconstruct a decent source wavelet that approaches the ground truth, but also it can produce credible background tomograms with optimized sources. Part of the cycle skipping problems can also be mitigated because it avoids the trial and error experiments on various sources. Numerical tests on a synthetic and a land dataset validate the effectiveness of this method. Restrictions on initial sources or starting velocity models will be relaxed, and this method can be extended to any other applications for engineering or exploration purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对可信层析成像的源波形和早期到达波形进行同位反演:合成和现场数据实例
从理论上讲,波形反演是重建地下结构的有力工具,但通常会遇到的一个问题是,精确的波源非常罕见,导致计算不稳定或发散。这个具有挑战性的实际问题虽然有时会被忽视,甚至不易察觉,但却很容易在计算的震源采集中产生偏差,进而导致错误的残差,这些残差会被抹回梯度,从而危及反演层析成像。对于任何真实数据集来说,即使某些采集数据在数据处理后会发生相同的转换,但每个采集镜头都对应于其独特的来源。为了解决这个问题,我们提出了一种源和早期到达波形的协同反演方法,两个子模块依次执行。这种方法不仅能重建接近地面实况的像样源小波,还能生成具有优化源的可信背景层析成像图。由于避免了在各种信号源上进行试验和误差实验,部分跳周期问题也可以得到缓解。对合成数据集和陆地数据集的数值测试验证了这种方法的有效性。对初始震源或起始速度模型的限制将被放宽,该方法可扩展到工程或勘探方面的任何其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Near Surface Geophysics
Near Surface Geophysics 地学-地球化学与地球物理
CiteScore
3.60
自引率
12.50%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.
期刊最新文献
Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen Innovative imaging of iron deposits using cross‐gradient joint inversion of potential field data with petrophysical correlation A fine‐tuning workflow for automatic first‐break picking with deep learning How to promote geophysics as a standard tool for geotechnical investigations Integration of ground geophysical methods to characterize near‐surface aquifer zones within an active mine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1