Shuhong Yang, Jie Jiang, Zifan Wang, Yijun Hou, Chunlan Jin, Qiao Song, Yukun Luo, Ting Li, Jun Zhang, Yuzong Zhang, Guiping Zhou, Yuanyong Deng, Jingxiu Wang
{"title":"Long-term variation of the solar polar magnetic fields at different latitudes","authors":"Shuhong Yang, Jie Jiang, Zifan Wang, Yijun Hou, Chunlan Jin, Qiao Song, Yukun Luo, Ting Li, Jun Zhang, Yuzong Zhang, Guiping Zhou, Yuanyong Deng, Jingxiu Wang","doi":"10.1088/1674-4527/ad539a","DOIUrl":null,"url":null,"abstract":"\n The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind. However, because our view of the Sun is limited in the ecliptic plane, the polar regions remain largely uncharted. Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021, we investigate the long-term variation of the magnetic fields in polar caps at different latitudes. The Hinode magnetic measurements shows that the polarity reversal processes in the north and south polar caps are non-simultaneous. The variation of the averaged radial magnetic flux density reveals that, in each polar cap, the polarity reversal is completed successively from the 70$\\degr$ latitude to the pole, reflecting a poleward magnetic flux migration therein. These results clarify the polar magnetic polarity reversal process at different latitudes.","PeriodicalId":509923,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"45 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad539a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind. However, because our view of the Sun is limited in the ecliptic plane, the polar regions remain largely uncharted. Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021, we investigate the long-term variation of the magnetic fields in polar caps at different latitudes. The Hinode magnetic measurements shows that the polarity reversal processes in the north and south polar caps are non-simultaneous. The variation of the averaged radial magnetic flux density reveals that, in each polar cap, the polarity reversal is completed successively from the 70$\degr$ latitude to the pole, reflecting a poleward magnetic flux migration therein. These results clarify the polar magnetic polarity reversal process at different latitudes.