HIFAST: An HI Data Calibration and Imaging Pipeline for FAST II. Flux Density Calibration

Ziming Liu, Jie Wang, Ying-Jie Jing, Zhiyu Zhang, Chen Xu, Qingze Chen, Ningyu Tang, Qingliang Yang, Tiantian Liang
{"title":"HIFAST: An HI Data Calibration and Imaging Pipeline for FAST II. Flux Density Calibration","authors":"Ziming Liu, Jie Wang, Ying-Jie Jing, Zhiyu Zhang, Chen Xu, Qingze Chen, Ningyu Tang, Qingliang Yang, Tiantian Liang","doi":"10.1088/1674-4527/ad5398","DOIUrl":null,"url":null,"abstract":"\n Accurate flux density calibration is essential for precise analysis and interpretation of observations across different observation modes and instruments. In this research, we introduce the flux calibration model incorporated in HIFAST pipeline, designed for processing HI 21-cm spectra. Furthermore, we investigate different calibration techniques and assess the dependence of the gain parameter on the time and environmental factors. A comparison is carried out in various observation modes (e.g. tracking and scanning modes) to determine the flux density gain (G), revealing insignificant discrepancies in G among different methods. Long-term monitoring data shows a linear correlation between G and atmospheric temperature. After subtracting the G - Temperature dependence, the dispersion of G is reduced to <3% over a one-year time scale. The stability of the receiver response of FAST is considered sufficient to facilitate HI observations that can accommodate a moderate error in flux calibration (e.g., >~5%) when utilizing a constant G for calibration purposes. Our study will serve as a useful addition to the results provided by Jiang et al (2020). Detailed measurements of G for the 19 beams of FAST, covering the frequency range 1000 MHz - 1500 MHz can be found on the HIFAST homepage: https://hifast.readthedocs.io/fluxgain","PeriodicalId":509923,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"39 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad5398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate flux density calibration is essential for precise analysis and interpretation of observations across different observation modes and instruments. In this research, we introduce the flux calibration model incorporated in HIFAST pipeline, designed for processing HI 21-cm spectra. Furthermore, we investigate different calibration techniques and assess the dependence of the gain parameter on the time and environmental factors. A comparison is carried out in various observation modes (e.g. tracking and scanning modes) to determine the flux density gain (G), revealing insignificant discrepancies in G among different methods. Long-term monitoring data shows a linear correlation between G and atmospheric temperature. After subtracting the G - Temperature dependence, the dispersion of G is reduced to <3% over a one-year time scale. The stability of the receiver response of FAST is considered sufficient to facilitate HI observations that can accommodate a moderate error in flux calibration (e.g., >~5%) when utilizing a constant G for calibration purposes. Our study will serve as a useful addition to the results provided by Jiang et al (2020). Detailed measurements of G for the 19 beams of FAST, covering the frequency range 1000 MHz - 1500 MHz can be found on the HIFAST homepage: https://hifast.readthedocs.io/fluxgain
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HIFAST:用于 FAST II 的 HI 数据校准和成像管道。通量密度校准
准确的通量密度校准对于精确分析和解释不同观测模式和仪器的观测结果至关重要。在这项研究中,我们介绍了 HIFAST 管道中的通量校准模型,该模型专为处理 HI 21-cm 光谱而设计。此外,我们还研究了不同的校准技术,并评估了增益参数对时间和环境因素的依赖性。我们对各种观测模式(如跟踪和扫描模式)进行了比较,以确定通量密度增益(G),发现不同方法的 G 值差异不大。长期监测数据显示,G 与大气温度呈线性相关。在减去 G 与温度的相关性后,当使用恒定 G 进行校准时,G 的离散性降低到 ~5%。我们的研究将是对 Jiang 等人(2020 年)研究结果的有益补充。关于 FAST 19 个波束的 G 的详细测量结果(覆盖频率范围 1000 MHz - 1500 MHz),请访问 HIFAST 主页:https://hifast.readthedocs.io/fluxgain。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supermassive primordial black holes for nano-Hertz gravitational waves and high-redshift JWST galaxies The design of GECAM Scientific Ground Segment Charged Particles Capture Cross-Section by a Weakly Charged Schwarzschild Black Hole Photometric studies of EV Cnc and AH Cnc in the open cluster M 67 X-ray Sources Classification Using Machine Learning: A Study with EP-WXT Pathfinder LEIA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1