{"title":"Research on the construction of multi objective coupling model and optimization method of ship form","authors":"Jie Liu, Baoji Zhang, Yuyang Lai, Liqiao Fang","doi":"10.1002/fld.5315","DOIUrl":null,"url":null,"abstract":"<p>Multi-objective optimization of ship form can effectively reduce ship energy consumption, and is one of the important research topics of green ships. However, the computational cost of numerical simulation based on computational fluid dynamics (CFD) theory is relatively high, which affects the efficiency of optimization. Traditional subjective weighting methods mostly rely on expert's experience, which affects the scientificity of optimization. This paper effectively integrates the CFD method, the improved multi-objective optimization algorithm and the objective weighting method to build a ship form multi-objective optimization framework. Conduct multi-objective optimization research on resistance and seakeeping performance of a very large crude oil carrier (KVLCC) ship. The improved bare-bones multi-objective particle swarm optimization (IBBMOPSO) algorithm is used to obtain the pareto front, and the kernel principal component analysis (KPCA) method is used to objectively assign the weight of each target. Finally, the optimal ship form scheme with high satisfaction was obtained. The multi-objective optimization framework constructed in this paper can provide a certain theoretical basis and technical support for the development of ship greening and digital transformation.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 10","pages":"1617-1630"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5315","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-objective optimization of ship form can effectively reduce ship energy consumption, and is one of the important research topics of green ships. However, the computational cost of numerical simulation based on computational fluid dynamics (CFD) theory is relatively high, which affects the efficiency of optimization. Traditional subjective weighting methods mostly rely on expert's experience, which affects the scientificity of optimization. This paper effectively integrates the CFD method, the improved multi-objective optimization algorithm and the objective weighting method to build a ship form multi-objective optimization framework. Conduct multi-objective optimization research on resistance and seakeeping performance of a very large crude oil carrier (KVLCC) ship. The improved bare-bones multi-objective particle swarm optimization (IBBMOPSO) algorithm is used to obtain the pareto front, and the kernel principal component analysis (KPCA) method is used to objectively assign the weight of each target. Finally, the optimal ship form scheme with high satisfaction was obtained. The multi-objective optimization framework constructed in this paper can provide a certain theoretical basis and technical support for the development of ship greening and digital transformation.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.