ChirpTransformer: Versatile LoRa Encoding for Low-power Wide-area IoT

Chenning Li, Yidong Ren, Shuai Tong, Shakhrul Iman Siam, Mi Zhang, Yunhao Liu, Jiliang Wang, Zhichao Cao, 2024.ChirpTransformer
{"title":"ChirpTransformer: Versatile LoRa Encoding for Low-power Wide-area IoT","authors":"Chenning Li, Yidong Ren, Shuai Tong, Shakhrul Iman Siam, Mi Zhang, Yunhao Liu, Jiliang Wang, Zhichao Cao, 2024.ChirpTransformer","doi":"10.1145/3643832.3661861","DOIUrl":null,"url":null,"abstract":"This paper introduces ChirpTransformer , a versatile LoRa encoding framework that harnesses broad chirp features to dynamically modulate data, enhancing network coverage, throughput, and energy efficiency. Unlike the standard LoRa encoder that offers only single configurable chirp feature, our framework introduces four distinct chirp features, expanding the spectrum of methods available for data modulation. To implement these features on commercial off-the-shelf (COTS) LoRa nodes, we utilize a combination of a software design and a hardware interrupt. ChirpTransformer serves as the foundation for optimizing encoding and decoding in three specific case studies: weak signal decoding for extended network coverage, concurrent transmission for heightened network throughput, and data rate adaptation for improved network energy efficiency. Each case study involves the development of an end-to-end system to comprehensively evaluate its performance. The evaluation results demonstrate remarkable enhancements compared to the standard LoRa. Specifically, ChirpTransformer achieves a 2.38 × increase in network coverage, a 3.14 × boost in network throughput, and a 3.93 × of battery lifetime.","PeriodicalId":358835,"journal":{"name":"ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services","volume":"15 2","pages":"479-491"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3643832.3661861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces ChirpTransformer , a versatile LoRa encoding framework that harnesses broad chirp features to dynamically modulate data, enhancing network coverage, throughput, and energy efficiency. Unlike the standard LoRa encoder that offers only single configurable chirp feature, our framework introduces four distinct chirp features, expanding the spectrum of methods available for data modulation. To implement these features on commercial off-the-shelf (COTS) LoRa nodes, we utilize a combination of a software design and a hardware interrupt. ChirpTransformer serves as the foundation for optimizing encoding and decoding in three specific case studies: weak signal decoding for extended network coverage, concurrent transmission for heightened network throughput, and data rate adaptation for improved network energy efficiency. Each case study involves the development of an end-to-end system to comprehensively evaluate its performance. The evaluation results demonstrate remarkable enhancements compared to the standard LoRa. Specifically, ChirpTransformer achieves a 2.38 × increase in network coverage, a 3.14 × boost in network throughput, and a 3.93 × of battery lifetime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChirpTransformer:用于低功耗广域物联网的多功能 LoRa 编码器
本文介绍的 ChirpTransformer 是一种多功能 LoRa 编码框架,它利用广泛的啁啾特性对数据进行动态调制,从而提高网络覆盖率、吞吐量和能效。标准的 LoRa 编码器只提供单一的可配置啁啾特性,而我们的框架则引入了四种不同的啁啾特性,扩大了数据调制方法的范围。为了在商用现成 (COTS) LoRa 节点上实现这些功能,我们将软件设计与硬件中断相结合。ChirpTransformer 是在三个具体案例研究中优化编码和解码的基础:扩大网络覆盖的弱信号解码、提高网络吞吐量的并发传输以及提高网络能效的数据速率适应。每个案例研究都涉及端到端系统的开发,以全面评估其性能。评估结果表明,与标准 LoRa 相比,ChirpTrans 的性能有了显著提升。具体而言,ChirpTransformer 的网络覆盖率提高了 2.38 倍,网络吞吐量提高了 3.14 倍,电池寿命延长了 3.93 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CoActo: CoActive Neural Network Inference Offloading with Fine-grained and Concurrent Execution Poster: Towards Pub/Sub Multimodal Data Transmission in IoT Environment CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference Practical Optical Camera Communication Behind Unseen and Complex Backgrounds Poster: Leveraging Apple's Find My Network for Large-Scale Distributed Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1