3D-Printed Mechano-Optic Force Sensor for Soft Robotic Gripper Enabled by Programmable Structural Metamaterials

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-06-02 DOI:10.1002/aisy.202400057
Chidanand Hegde, Ravi Chaithanya Mysa, Aaron Chooi, Saikrishna Dontu, Joel Ming Rui Tan, Lydia Helena Wong, Pablo Valdivia y Alvarado, Shlomo Magdassi
{"title":"3D-Printed Mechano-Optic Force Sensor for Soft Robotic Gripper Enabled by Programmable Structural Metamaterials","authors":"Chidanand Hegde,&nbsp;Ravi Chaithanya Mysa,&nbsp;Aaron Chooi,&nbsp;Saikrishna Dontu,&nbsp;Joel Ming Rui Tan,&nbsp;Lydia Helena Wong,&nbsp;Pablo Valdivia y Alvarado,&nbsp;Shlomo Magdassi","doi":"10.1002/aisy.202400057","DOIUrl":null,"url":null,"abstract":"<p>Rapid deployment of automation in today's world has opened up exciting possibilities in the realm of design and fabrication of soft robotic grippers endowed with sensing capabilities. Herein, a novel design and rapid fabrication by 3D printing of a mechano-optic force sensor with a large dynamic range, sensitivity, and linear response, enabled by metamaterials-based structures, is presented. A simple approach for programming the metamaterial's behavior based on mathematical modeling of the sensor under dynamic loading is proposed. Machine learning models are utilized to predict the complete force–deformation profile, encompassing the linear range, the onset of nonlinear behavior, and the slope of profiles in both bending and compression-dominated regions. The design supports seamless integration of the sensor into soft grippers, enabling 3D printing of the soft gripper with an embedded sensor in a single step, thus overcoming the tedious and complex and multiple fabrication steps commonly applied in conventional processes. The sensor boasts a fine resolution of 0.015 N, a measurement range up to 16 N, linearity (adj. <i>R</i><sup>2</sup>–0.991), and delivers consistent performance beyond 100 000 cycles. The sensitivity and range of the embedded mechano-optic force sensor can be easily programmed by both the metamaterial structure and the material's properties.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 9","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid deployment of automation in today's world has opened up exciting possibilities in the realm of design and fabrication of soft robotic grippers endowed with sensing capabilities. Herein, a novel design and rapid fabrication by 3D printing of a mechano-optic force sensor with a large dynamic range, sensitivity, and linear response, enabled by metamaterials-based structures, is presented. A simple approach for programming the metamaterial's behavior based on mathematical modeling of the sensor under dynamic loading is proposed. Machine learning models are utilized to predict the complete force–deformation profile, encompassing the linear range, the onset of nonlinear behavior, and the slope of profiles in both bending and compression-dominated regions. The design supports seamless integration of the sensor into soft grippers, enabling 3D printing of the soft gripper with an embedded sensor in a single step, thus overcoming the tedious and complex and multiple fabrication steps commonly applied in conventional processes. The sensor boasts a fine resolution of 0.015 N, a measurement range up to 16 N, linearity (adj. R2–0.991), and delivers consistent performance beyond 100 000 cycles. The sensitivity and range of the embedded mechano-optic force sensor can be easily programmed by both the metamaterial structure and the material's properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可编程结构超材料实现软机器人抓手的三维打印机械光学力传感器
当今世界自动化的快速发展为设计和制造具有传感功能的软机械手提供了令人兴奋的可能性。本文介绍了一种利用超材料结构设计并通过三维打印技术快速制造的机械光学力传感器,该传感器具有动态范围大、灵敏度高和线性响应的特点。本文提出了一种基于动态负载下传感器数学建模的超材料行为编程简单方法。利用机器学习模型来预测完整的力-变形曲线,包括线性范围、非线性行为的开始以及弯曲和压缩主导区域的曲线斜率。该设计支持将传感器无缝集成到软抓手中,只需一步就能实现带有嵌入式传感器的软抓手的三维打印,从而克服了传统工艺中常见的繁琐、复杂和多重制造步骤。该传感器具有 0.015 N 的高分辨率,测量范围高达 16 N,线性度(adj. R2-0.991)良好,性能稳定,超过 100 000 次循环。嵌入式机械光学力传感器的灵敏度和量程可通过超材料结构和材料特性轻松编程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1