Extended Infrared Absorption in Nanostructured Si Through Se Implantation and Flash Lamp Annealing

Behrad Radfar, Xiaolong Liu, Y. Berencén, M. S. Shaikh, S. Prucnal, U. Kentsch, V. Vähänissi, Shengqiang Zhou, H. Savin
{"title":"Extended Infrared Absorption in Nanostructured Si Through Se Implantation and Flash Lamp Annealing","authors":"Behrad Radfar, Xiaolong Liu, Y. Berencén, M. S. Shaikh, S. Prucnal, U. Kentsch, V. Vähänissi, Shengqiang Zhou, H. Savin","doi":"10.1002/pssa.202400133","DOIUrl":null,"url":null,"abstract":"Nanostructured silicon can reduce reflectance loss in optoelectronic applications, but intrinsic silicon cannot absorb photons with energy below its 1.1 eV bandgap. However, incorporating a high concentration of dopants, i.e., hyperdoping, to nanostructured silicon is expected to bring broadband absorption ranging from UV to short‐wavelength IR (SWIR, <2500 nm). In this work, we prepare nanostructured silicon using cryogenic plasma etching, which is then hyperdoped with selenium (Se) through ion implantation. Besides sub‐bandgap absorption, ion implantation forms crystal damage, which can be recovered through flash lamp annealing. We study crystal damage and broadband (250–2500 nm) absorption from planar and nanostructured surfaces. We first show that nanostructures survive ion implantation hyperdoping and flash lamp annealing under optimized conditions. Secondly, we demonstrate that nanostructured silicon has a 15% higher sub‐bandgap absorption (1100–2500 nm) compared to its non‐hyperdoped nanostructure counterpart while maintaining 97% above‐bandgap absorption (250–1100 nm). Lastly, we simulate the sub‐bandgap absorption of hyperdoped Si nanostructures in a 2D model using the finite element method. Simulation results show that the sub‐bandgap absorption is mainly limited by the thickness of the hyperdoped layer rather than the height of nanostructures.","PeriodicalId":20150,"journal":{"name":"physica status solidi (a)","volume":"54 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (a)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202400133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanostructured silicon can reduce reflectance loss in optoelectronic applications, but intrinsic silicon cannot absorb photons with energy below its 1.1 eV bandgap. However, incorporating a high concentration of dopants, i.e., hyperdoping, to nanostructured silicon is expected to bring broadband absorption ranging from UV to short‐wavelength IR (SWIR, <2500 nm). In this work, we prepare nanostructured silicon using cryogenic plasma etching, which is then hyperdoped with selenium (Se) through ion implantation. Besides sub‐bandgap absorption, ion implantation forms crystal damage, which can be recovered through flash lamp annealing. We study crystal damage and broadband (250–2500 nm) absorption from planar and nanostructured surfaces. We first show that nanostructures survive ion implantation hyperdoping and flash lamp annealing under optimized conditions. Secondly, we demonstrate that nanostructured silicon has a 15% higher sub‐bandgap absorption (1100–2500 nm) compared to its non‐hyperdoped nanostructure counterpart while maintaining 97% above‐bandgap absorption (250–1100 nm). Lastly, we simulate the sub‐bandgap absorption of hyperdoped Si nanostructures in a 2D model using the finite element method. Simulation results show that the sub‐bandgap absorption is mainly limited by the thickness of the hyperdoped layer rather than the height of nanostructures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过硒植入和闪灯退火扩展纳米结构硅的红外吸收能力
纳米结构硅可减少光电应用中的反射损失,但本征硅无法吸收能量低于其 1.1 eV 带隙的光子。然而,在纳米结构硅中加入高浓度掺杂剂(即超掺杂)有望带来从紫外到短波红外(SWIR,<2500 nm)的宽带吸收。在这项研究中,我们利用低温等离子刻蚀法制备了纳米结构硅,然后通过离子注入法将硒(Se)超掺杂到纳米结构硅中。除了亚带隙吸收之外,离子注入还会形成晶体损伤,这种损伤可以通过闪灯退火来恢复。我们研究了晶体损伤以及平面和纳米结构表面的宽带(250-2500 nm)吸收。我们首先证明了纳米结构在离子注入超掺杂和闪灯退火的优化条件下仍能存活。其次,我们证明纳米结构硅的亚带隙吸收(1100-2500 纳米)比未超掺杂的纳米结构高 15%,同时保持 97% 的带隙以上吸收(250-1100 纳米)。最后,我们利用有限元法在二维模型中模拟了超掺杂硅纳米结构的亚带隙吸收。模拟结果表明,亚带隙吸收主要受限于超掺杂层的厚度,而不是纳米结构的高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast Laser Hyperdoped Black Silicon and Its Application in Photodetectors: A Review Dynamic RON Degradation Suppression by Gate Field Plate in Partially Recessed AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Graphene Oxide as Novel Visible Light Active Photocatalyst: Synthesis, Modification by Nitrogen and Boron Doping, and Photocatalytic Application Influence of Parameters in Vapor Transport Equilibration Treatment on Composition and Homogeneity of LiTaO3 Single Crystals Comparative Study on Temperature‐Dependent Internal Quantum Efficiency and Light–Extraction Efficiency in III‐Nitride–, III‐Phosphide–, and III‐Arsenide–based Light‐Emitting Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1