Out‐of‐Plane Dynamics of a Novel Auxetic Honeycomb with an Anti‐Trichiral Hierarchy

Xinlong Guang, Huilan Huang, Xiaolin Deng
{"title":"Out‐of‐Plane Dynamics of a Novel Auxetic Honeycomb with an Anti‐Trichiral Hierarchy","authors":"Xinlong Guang, Huilan Huang, Xiaolin Deng","doi":"10.1002/pssb.202400191","DOIUrl":null,"url":null,"abstract":"This study extensively characterizes the out‐of‐plane stiffness and energy harvesting capabilities of a newly proposed anti‐trichiral hierarchical auxetic honeycomb structure, both mechanically and deformationally. By introducing a design concept based on the anti‐trichiral honeycomb (ATCH), a structure with superior out‐of‐plane load‐carrying capacity and excellent auxeticity is achieved. To validate the finite element model, compression simulations are conducted. Comparative investigations into the morphing characteristics and energy harvesting performance between the novel structure and the ATCH are performed. Additionally, the influence of various parameters on the comprehensive performance of the novel auxetic structure is explored. It has been found that the angle φ is most sensitive to the auxetic properties, while the ratio k significantly impacts energy absorption. This research advances the design of novel auxetic structures for potential applications in protective engineering.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202400191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study extensively characterizes the out‐of‐plane stiffness and energy harvesting capabilities of a newly proposed anti‐trichiral hierarchical auxetic honeycomb structure, both mechanically and deformationally. By introducing a design concept based on the anti‐trichiral honeycomb (ATCH), a structure with superior out‐of‐plane load‐carrying capacity and excellent auxeticity is achieved. To validate the finite element model, compression simulations are conducted. Comparative investigations into the morphing characteristics and energy harvesting performance between the novel structure and the ATCH are performed. Additionally, the influence of various parameters on the comprehensive performance of the novel auxetic structure is explored. It has been found that the angle φ is most sensitive to the auxetic properties, while the ratio k significantly impacts energy absorption. This research advances the design of novel auxetic structures for potential applications in protective engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有反三环结构的新型辅助蜂窝的平面外动力学
本研究从机械和变形两方面广泛鉴定了一种新提出的反三螺旋分层辅助蜂窝结构的平面外刚度和能量收集能力。通过引入基于反三螺旋蜂窝(ATCH)的设计理念,该结构实现了卓越的平面外承载能力和出色的辅助性。为了验证有限元模型,我们进行了压缩模拟。对新型结构和 ATCH 的变形特性和能量收集性能进行了比较研究。此外,还探讨了各种参数对新型辅助结构综合性能的影响。研究发现,角度 φ 对辅助特性最为敏感,而比率 k 则对能量吸收有显著影响。这项研究推动了新型辅助结构的设计,有望在防护工程中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1