Three-dimensional bioprinting biphasic multicellular living scaffold facilitates osteochondral defect regeneration

IF 24.5 Q1 CHEMISTRY, PHYSICAL Interdisciplinary Materials Pub Date : 2024-06-02 DOI:10.1002/idm2.12181
Xingge Yu, Mazaher Gholipourmalekabadi, Xudong Wang, Changyong Yuan, Kaili Lin
{"title":"Three-dimensional bioprinting biphasic multicellular living scaffold facilitates osteochondral defect regeneration","authors":"Xingge Yu,&nbsp;Mazaher Gholipourmalekabadi,&nbsp;Xudong Wang,&nbsp;Changyong Yuan,&nbsp;Kaili Lin","doi":"10.1002/idm2.12181","DOIUrl":null,"url":null,"abstract":"<p>Due to tissue lineage variances and the anisotropic physiological characteristics, regenerating complex osteochondral tissues (cartilage and subchondral bone) remains a great challenge, which is primarily due to the distinct requirements for cartilage and subchondral bone regeneration. For cartilage regeneration, a significant amount of newly generated chondrocytes is required while maintaining their phenotype. Conversely, bone regeneration necessitates inducing stem cells to differentiate into osteoblasts. Additionally, the construction of the osteochondral interface is crucial. In this study, we fabricated a biphasic multicellular bioprinted scaffold mimicking natural osteochondral tissue employing three-dimensional (3D) bioprinting technology. Briefly, gelatin-methacryloyl (GelMA) loaded with articular chondrocytes and bone marrow mesenchymal stem cells (ACs/BMSCs), serving as the cartilage layer, preserved the phenotype of ACs and promoted the differentiation of BMSCs into chondrocytes through the interaction between ACs and BMSCs, thereby facilitating cartilage regeneration. GelMA/strontium-substituted xonotlite (Sr-CSH) loaded with BMSCs, serving as the subchondral bone layer, regulated the differentiation of BMSCs into osteoblasts and enhanced the secretion of cartilage matrix by ACs in the cartilage layer through the slow release of bioactive ions from Sr-CSH. Additionally, GelMA, serving as the matrix material, contributed to the reconstruction of the osteochondral interface. Ultimately, this biphasic multicellular bioprinted scaffold demonstrated satisfactory simultaneous regeneration of osteochondral defects. In this study, a promising strategy for the application of 3D bioprinting technology in complex tissue regeneration was proposed.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":null,"pages":null},"PeriodicalIF":24.5000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to tissue lineage variances and the anisotropic physiological characteristics, regenerating complex osteochondral tissues (cartilage and subchondral bone) remains a great challenge, which is primarily due to the distinct requirements for cartilage and subchondral bone regeneration. For cartilage regeneration, a significant amount of newly generated chondrocytes is required while maintaining their phenotype. Conversely, bone regeneration necessitates inducing stem cells to differentiate into osteoblasts. Additionally, the construction of the osteochondral interface is crucial. In this study, we fabricated a biphasic multicellular bioprinted scaffold mimicking natural osteochondral tissue employing three-dimensional (3D) bioprinting technology. Briefly, gelatin-methacryloyl (GelMA) loaded with articular chondrocytes and bone marrow mesenchymal stem cells (ACs/BMSCs), serving as the cartilage layer, preserved the phenotype of ACs and promoted the differentiation of BMSCs into chondrocytes through the interaction between ACs and BMSCs, thereby facilitating cartilage regeneration. GelMA/strontium-substituted xonotlite (Sr-CSH) loaded with BMSCs, serving as the subchondral bone layer, regulated the differentiation of BMSCs into osteoblasts and enhanced the secretion of cartilage matrix by ACs in the cartilage layer through the slow release of bioactive ions from Sr-CSH. Additionally, GelMA, serving as the matrix material, contributed to the reconstruction of the osteochondral interface. Ultimately, this biphasic multicellular bioprinted scaffold demonstrated satisfactory simultaneous regeneration of osteochondral defects. In this study, a promising strategy for the application of 3D bioprinting technology in complex tissue regeneration was proposed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维生物打印双相多细胞活支架促进骨软骨缺损再生
由于组织血统的差异和各向异性的生理特点,再生复杂的骨软骨组织(软骨和软骨下骨)仍然是一个巨大的挑战,这主要是由于软骨和软骨下骨再生的要求不同。软骨再生需要大量新生成的软骨细胞,同时保持其表型。相反,骨再生需要诱导干细胞分化成成骨细胞。此外,骨软骨界面的构建也至关重要。在这项研究中,我们利用三维(3D)生物打印技术制作了一种模仿天然骨软骨组织的双相多细胞生物打印支架。简而言之,装载了关节软骨细胞和骨髓间充质干细胞(ACs/BMSCs)的明胶-甲基丙烯酰(GelMA)作为软骨层,保留了ACs的表型,并通过ACs和BMSCs之间的相互作用促进BMSCs分化为软骨细胞,从而促进软骨再生。载入 BMSCs 的 GelMA/锶替代氙石(Sr-CSH)作为软骨下骨层,通过 Sr-CSH 中生物活性离子的缓慢释放,调节 BMSCs 向成骨细胞的分化,并增强软骨层中 ACs 对软骨基质的分泌。此外,作为基质材料的 GelMA 也有助于骨软骨界面的重建。最终,这种双相多细胞生物打印支架实现了令人满意的骨软骨缺损同步再生。这项研究为三维生物打印技术在复杂组织再生中的应用提出了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Outside Front Cover: Volume 3 Issue 5 Inside Front Cover: Volume 3 Issue 5 Inside Back Cover: Volume 3 Issue 5 Outside Back Cover: Volume 3 Issue 5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1