Low-Polarization, Broad-Spectrum Semiconductor Optical Amplifiers

Nanomaterials Pub Date : 2024-06-02 DOI:10.3390/nano14110969
Meng Zhang, Tianyi Zhang, Hui Tang, L. Liang, Yongyi Chen, Li Qin, Yue Song, Yuxin Lei, P. Jia, Yubing Wang, Cheng Qiu, Yuntao Cao, Yongqiang Ning, Lijun Wang
{"title":"Low-Polarization, Broad-Spectrum Semiconductor Optical Amplifiers","authors":"Meng Zhang, Tianyi Zhang, Hui Tang, L. Liang, Yongyi Chen, Li Qin, Yue Song, Yuxin Lei, P. Jia, Yubing Wang, Cheng Qiu, Yuntao Cao, Yongqiang Ning, Lijun Wang","doi":"10.3390/nano14110969","DOIUrl":null,"url":null,"abstract":"Polarization-insensitive semiconductor optical amplifiers (SOAs) in all-optical networks can improve the signal-light quality and transmission rate. Herein, to reduce the gain sensitivity to polarization, a multi-quantum-well SOA in the 1550 nm band is designed, simulated, and developed. The active region mainly comprises the quaternary compound InGaAlAs, as differences in the potential barriers and wells of the components cause lattice mismatch. Consequently, a strained quantum well is generated, providing the SOA with gain insensitivity to the polarization state of light. In simulations, the SOA with ridge widths of 4 µm, 5 µm, and 6 µm is investigated. A 3 dB gain bandwidth of >140 nm is achieved with a 4 µm ridge width, whereas a 6 µm ridge width provides more output power and gain. The saturated output power is 150 mW (21.76 dB gain) at an input power of 0 dBm but increases to 233 mW (13.67 dB gain) at an input power of 10 dBm. The polarization sensitivity is <3 dBm at −20 dBm. This design, which achieves low polarization sensitivity, a wide gain bandwidth, and high gain, will be applicable in a wide range of fields following further optimization.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"42 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14110969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polarization-insensitive semiconductor optical amplifiers (SOAs) in all-optical networks can improve the signal-light quality and transmission rate. Herein, to reduce the gain sensitivity to polarization, a multi-quantum-well SOA in the 1550 nm band is designed, simulated, and developed. The active region mainly comprises the quaternary compound InGaAlAs, as differences in the potential barriers and wells of the components cause lattice mismatch. Consequently, a strained quantum well is generated, providing the SOA with gain insensitivity to the polarization state of light. In simulations, the SOA with ridge widths of 4 µm, 5 µm, and 6 µm is investigated. A 3 dB gain bandwidth of >140 nm is achieved with a 4 µm ridge width, whereas a 6 µm ridge width provides more output power and gain. The saturated output power is 150 mW (21.76 dB gain) at an input power of 0 dBm but increases to 233 mW (13.67 dB gain) at an input power of 10 dBm. The polarization sensitivity is <3 dBm at −20 dBm. This design, which achieves low polarization sensitivity, a wide gain bandwidth, and high gain, will be applicable in a wide range of fields following further optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低偏振、宽光谱半导体光放大器
全光网络中对偏振不敏感的半导体光放大器(SOA)可以提高信号光质量和传输速率。为了降低增益对偏振的敏感性,本文设计、模拟并开发了一种 1550 nm 波段的多量子阱 SOA。有源区主要由四元化合物 InGaAlAs 组成,因为各元件的势垒和阱的差异会导致晶格失配。因此,产生了应变量子阱,使 SOA 对光的偏振态具有增益不敏感性。在模拟中,研究了脊宽分别为 4 微米、5 微米和 6 微米的 SOA。4 微米脊宽可实现大于 140 纳米的 3 分贝增益带宽,而 6 微米脊宽则可提供更大的输出功率和增益。输入功率为 0 dBm 时,饱和输出功率为 150 mW(增益 21.76 dB),而输入功率为 10 dBm 时,饱和输出功率增至 233 mW(增益 13.67 dB)。在 -20 dBm 时,极化灵敏度<3 dBm。这一设计实现了低偏振灵敏度、宽增益带宽和高增益,在进一步优化后将适用于广泛的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications Anisotropic SmFe10V2 Bulk Magnets with Enhanced Coercivity via Ball Milling Process A Novel Fabrication of Hematite Nanoparticles via Recycling of Titanium Slag by Pyrite Reduction Technology Plant-Derived Extracellular Vesicles as a Novel Frontier in Cancer Therapeutics Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1