{"title":"A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential","authors":"","doi":"10.1016/j.matre.2024.100280","DOIUrl":null,"url":null,"abstract":"<div><p>Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply, resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the sustainable development of distributed ocean sensing networks. Here, we design a deep-sea differential-pressure triboelectric nanogenerator (DP-TENG) based on a spiral shaft drive using modified polymer materials to harness the hydrostatic pressure gradient energy at varying ocean depths to power underwater equipment. The spiral shaft structure converts a single compression into multiple rotations of the TENG rotor, achieving efficient conversion of differential pressure energy. The multi-pair electrode design enables the DP-TENG to generate a peak current of 61.7 μA, the instantaneous current density can reach 0.69 μA cm<sup>−2</sup>, and the output performance can be improved by optimizing the spiral angle of the shaft. The DP-TENG can charge a 33 μF capacitor to 17.5 V within five working cycles. It can also power a digital calculator and light up 116 commercial power light-emitting diodes, demonstrating excellent output capability. With its simple structure, low production cost, and small form factor, the DP-TENG can be seamlessly integrated with underwater vehicles. The results hold broad prospects for underwater blue energy harvesting and are expected to contribute to the development of self-powered equipment toward emerging “smart ocean” and blue economy applications.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"4 3","pages":"Article 100280"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935824000508/pdfft?md5=025f870d79df10a10369c3e5d4938484&pid=1-s2.0-S2666935824000508-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply, resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the sustainable development of distributed ocean sensing networks. Here, we design a deep-sea differential-pressure triboelectric nanogenerator (DP-TENG) based on a spiral shaft drive using modified polymer materials to harness the hydrostatic pressure gradient energy at varying ocean depths to power underwater equipment. The spiral shaft structure converts a single compression into multiple rotations of the TENG rotor, achieving efficient conversion of differential pressure energy. The multi-pair electrode design enables the DP-TENG to generate a peak current of 61.7 μA, the instantaneous current density can reach 0.69 μA cm−2, and the output performance can be improved by optimizing the spiral angle of the shaft. The DP-TENG can charge a 33 μF capacitor to 17.5 V within five working cycles. It can also power a digital calculator and light up 116 commercial power light-emitting diodes, demonstrating excellent output capability. With its simple structure, low production cost, and small form factor, the DP-TENG can be seamlessly integrated with underwater vehicles. The results hold broad prospects for underwater blue energy harvesting and are expected to contribute to the development of self-powered equipment toward emerging “smart ocean” and blue economy applications.