Structure-activity relationships of zirconium-modified copper-based catalysts during methanol steam reforming

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-06-02 DOI:10.1016/j.jcat.2024.115584
Qing Zhang, Didi Li, Zhaocong Jiang, Haoyuan Gu, Mengyuan Zhu, Shiqing Jin, Minghui Zhu
{"title":"Structure-activity relationships of zirconium-modified copper-based catalysts during methanol steam reforming","authors":"Qing Zhang,&nbsp;Didi Li,&nbsp;Zhaocong Jiang,&nbsp;Haoyuan Gu,&nbsp;Mengyuan Zhu,&nbsp;Shiqing Jin,&nbsp;Minghui Zhu","doi":"10.1016/j.jcat.2024.115584","DOIUrl":null,"url":null,"abstract":"<div><p>Acknowledged as an ideal method for <em>in situ</em> hydrogen generation, methanol steam reforming (MSR) requires high-performance catalysts to enhance production efficiency. Herein, we prepared a series of Zr-modified Cu-based catalysts by a coprecipitation method and conducted a systematic analysis of the impacts of structural variations on MSR performance. Extensive characterization reveals a strong dependence of the catalyst’s surface structure on Zr content. Introducing a moderate amount of Zr to the Cu/ZnO catalysts forms ZnZrO<sub>x</sub> solid solution and increases Cu dispersion, forming more Cu-ZnZrO<sub>x</sub> and Cu-ZnO interfacial sites with higher H<sub>2</sub> production rate. Further increases in Zr content enlarge Cu nanoparticles and multiply Cu-ZrO<sub>2</sub> interfacial sites. The optimal catalyst with a Zn/Zr molar ratio of 5, with the richest Cu-ZnO/Cu-ZnZrO<sub>x</sub> interfacial sites, achieves the highest H<sub>2</sub> production rate of 117.4 <span><math><mrow><msub><mtext>mmol</mtext><msub><mtext>H</mtext><mtext>2</mtext></msub></msub><mspace></mspace><msubsup><mtext>g</mtext><mrow><mtext>cat</mtext></mrow><mtext>-1</mtext></msubsup><mspace></mspace><msup><mrow><mtext>h</mtext></mrow><mtext>-1</mtext></msup></mrow></math></span> at 200 °C, which is 1.3 times and 6.8 times higher than those of Cu/ZnO and Cu/ZrO<sub>2</sub>, respectively.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724002975","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acknowledged as an ideal method for in situ hydrogen generation, methanol steam reforming (MSR) requires high-performance catalysts to enhance production efficiency. Herein, we prepared a series of Zr-modified Cu-based catalysts by a coprecipitation method and conducted a systematic analysis of the impacts of structural variations on MSR performance. Extensive characterization reveals a strong dependence of the catalyst’s surface structure on Zr content. Introducing a moderate amount of Zr to the Cu/ZnO catalysts forms ZnZrOx solid solution and increases Cu dispersion, forming more Cu-ZnZrOx and Cu-ZnO interfacial sites with higher H2 production rate. Further increases in Zr content enlarge Cu nanoparticles and multiply Cu-ZrO2 interfacial sites. The optimal catalyst with a Zn/Zr molar ratio of 5, with the richest Cu-ZnO/Cu-ZnZrOx interfacial sites, achieves the highest H2 production rate of 117.4 mmolH2gcat-1h-1 at 200 °C, which is 1.3 times and 6.8 times higher than those of Cu/ZnO and Cu/ZrO2, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲醇蒸汽转化过程中锆改性铜基催化剂的结构-活性关系
甲醇蒸汽转化(MSR)被认为是原位制氢的理想方法,需要高性能催化剂来提高生产效率。在此,我们采用共沉淀法制备了一系列 Zr 改性铜基催化剂,并系统分析了结构变化对 MSR 性能的影响。广泛的表征揭示了催化剂表面结构对 Zr 含量的强烈依赖性。在 Cu/ZnO 催化剂中引入适量的 Zr 会形成 ZnZrOx 固溶体并增加 Cu 的分散,形成更多的 Cu-ZnZrOx 和 Cu-ZnO 界面位点,从而提高 H2 产率。进一步增加 Zr 含量可扩大铜纳米颗粒,并增加 Cu-ZrO2 的界面位点。Zn/Zr 摩尔比为 5 的最佳催化剂具有最丰富的 Cu-ZnO/Cu-ZnZrOx 界面位点,在 200 ℃ 时的 H2 产率最高,达到 117.4 mmolH2gcat-1h-1 ,分别是 Cu/ZnO 和 Cu/ZrO2 的 1.3 倍和 6.8 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
Study on the micro-mechanism for the thermal stability of α-diimine nickel catalysts and active centers Confining polyoxometalates in porphyrin-based porous cationic polymer toward boosting visible-light-driven synthesis of sulfoxides and detoxification of mustard gas simulants Defect tailoring in K-doped carbon nitride: Enabling efficient decoupling of light and dark reactions for timely and delayed on-demand solar hydrogen production A novel and facile ultraviolet-induced photo-reduction for preparing oxidase-like AuNCs@H2N-ZIF-8 composites in alcohol-water solutions Construct novel day-night dual reaction centers WO3-FePc photocatalyst for multipollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1