Disentangling the impact of nested sources of variability on species growth processes: A mixture of multilevel mixed model approach.

Pub Date : 2024-06-01 DOI:10.1002/sta4.695
Fabrice Moudjieu Leumbe, Frédéric Mortier, Patrice Soh Takam, Nicolas Picard, Allah‐Barem Félix, Baya Fidèle, M. Tadesse, Vivien Rossi
{"title":"Disentangling the impact of nested sources of variability on species growth processes: A mixture of multilevel mixed model approach.","authors":"Fabrice Moudjieu Leumbe, Frédéric Mortier, Patrice Soh Takam, Nicolas Picard, Allah‐Barem Félix, Baya Fidèle, M. Tadesse, Vivien Rossi","doi":"10.1002/sta4.695","DOIUrl":null,"url":null,"abstract":"The understanding of tree growth processes is crucial for promoting sustainable forest management strategies. This is a challenging task in highly biodiverse ecosystems where many tree species are observed on very few individuals and the small sample sizes hinder a good fit of species‐specific models. We propose the use of finite mixture of random coefficient regression models with multilevel nested random effects to infer guild specific fixed and random effects while evaluating the relative importance of the nested sources of variability on goodness‐of‐fit. This approach extends finite mixture of linear mixed model used for longitudinal or single group structured data contexts. A dedicated expectation–maximisation algorithm is introduced for parameter estimation. Simulations are performed for the evaluation of the misspecification of nested‐grouping structures. This work has been motivated by data collected biennially in Central African rainforests from 1986 to 2010. We show the accuracy of the proposed approach in successfully reproducing individual growth processes and classifying tree species into well‐differentiated clusters with clear ecological interpretations. Moreover, results confirm that interindividual variability appears as the most important factor to explain tropical tree species growth process variability from Central Africa forests.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The understanding of tree growth processes is crucial for promoting sustainable forest management strategies. This is a challenging task in highly biodiverse ecosystems where many tree species are observed on very few individuals and the small sample sizes hinder a good fit of species‐specific models. We propose the use of finite mixture of random coefficient regression models with multilevel nested random effects to infer guild specific fixed and random effects while evaluating the relative importance of the nested sources of variability on goodness‐of‐fit. This approach extends finite mixture of linear mixed model used for longitudinal or single group structured data contexts. A dedicated expectation–maximisation algorithm is introduced for parameter estimation. Simulations are performed for the evaluation of the misspecification of nested‐grouping structures. This work has been motivated by data collected biennially in Central African rainforests from 1986 to 2010. We show the accuracy of the proposed approach in successfully reproducing individual growth processes and classifying tree species into well‐differentiated clusters with clear ecological interpretations. Moreover, results confirm that interindividual variability appears as the most important factor to explain tropical tree species growth process variability from Central Africa forests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
厘清嵌套变异源对物种生长过程的影响:多层次混合模型的混合方法。
了解树木的生长过程对于促进可持续森林管理战略至关重要。这在生物多样性高度丰富的生态系统中是一项极具挑战性的任务,因为在这种生态系统中,许多树种只能在极少数个体上观察到,而且样本量小也阻碍了树种特异性模型的良好拟合。我们建议使用具有多层嵌套随机效应的有限混合随机系数回归模型来推断特定行会的固定效应和随机效应,同时评估嵌套变异源对拟合优度的相对重要性。这种方法扩展了用于纵向或单组结构化数据的有限线性混合模型。为参数估计引入了专门的期望最大化算法。对嵌套分组结构的错误规范进行了模拟评估。这项工作的灵感来自于 1986 年至 2010 年期间每两年在中非雨林收集的数据。我们展示了所提出方法的准确性,它成功地再现了个体生长过程,并将树种划分为具有明确生态解释的差异化群组。此外,研究结果还证实,个体间变异性是解释中非森林热带树种生长过程变异性的最重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1