Land Use Change in the Yangtze River Economic Belt during 2010 to 2020 and Future Comprehensive Prediction Based on Markov and ARIMA Models

Haotian Zheng, Fan Yu, Huawei Wan, Peirong Shi, Haonan Wang
{"title":"Land Use Change in the Yangtze River Economic Belt during 2010 to 2020 and Future Comprehensive Prediction Based on Markov and ARIMA Models","authors":"Haotian Zheng, Fan Yu, Huawei Wan, Peirong Shi, Haonan Wang","doi":"10.14358/pers.22-00132r3","DOIUrl":null,"url":null,"abstract":"The key data for accurate prediction is of great significance to accurately carry out the next step of sustainable land use development plan according to the demand of China. Consequently, the main purposes of our study are: (1) to delineate the characteristics of land use transitions\n within the Yangtze River Economic Belt; (2) to use the Markov model and the autoregressive integrated moving average (ARIMA) model for comparative analysis and prediction of land use distribution. This study analyzes land use/cover change (LUCC) data from 2010 and 2020 using the land use transition\n matrix, dynamic degree, and comprehensive index model and predicts 2025 land use by the Markov model. The study identifies a reduction in land usage over 11 years, particularly in grassland. The Markov and ARIMA models' significance is 0.002 (P < 0.01), showing arable land and woodland\n dominance, with varying changes in other land types.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering &amp; Remote Sensing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering &amp; Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00132r3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The key data for accurate prediction is of great significance to accurately carry out the next step of sustainable land use development plan according to the demand of China. Consequently, the main purposes of our study are: (1) to delineate the characteristics of land use transitions within the Yangtze River Economic Belt; (2) to use the Markov model and the autoregressive integrated moving average (ARIMA) model for comparative analysis and prediction of land use distribution. This study analyzes land use/cover change (LUCC) data from 2010 and 2020 using the land use transition matrix, dynamic degree, and comprehensive index model and predicts 2025 land use by the Markov model. The study identifies a reduction in land usage over 11 years, particularly in grassland. The Markov and ARIMA models' significance is 0.002 (P < 0.01), showing arable land and woodland dominance, with varying changes in other land types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于马尔可夫和 ARIMA 模型的 2010-2020 年长江经济带土地利用变化及未来综合预测
准确预测的关键数据对于根据我国需求准确开展下一步土地利用可持续发展规划具有重要意义。因此,我们研究的主要目的是(1)明确长江经济带土地利用变化特征;(2)利用马尔可夫模型和自回归综合移动平均(ARIMA)模型对土地利用分布进行对比分析和预测。本研究利用土地利用过渡矩阵、动态程度和综合指数模型分析了 2010 年和 2020 年的土地利用/覆盖变化(LUCC)数据,并利用马尔可夫模型预测了 2025 年的土地利用情况。研究发现,11 年来土地使用量有所减少,尤其是草地。马尔可夫模型和 ARIMA 模型的显著性为 0.002(P < 0.01),表明耕地和林地占主导地位,其他土地类型有不同程度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1