Eco-Engineered Low-Cost Carbosorbent Derived from Biodegradable Domestic Waste for Efficient Total Chromium Removal from Aqueous Environment: Spectroscopic and Adsorption Study

Vandana Saxena, Ashish Kumar Singh, Atul Srivastava, Anushree Srivastava
{"title":"Eco-Engineered Low-Cost Carbosorbent Derived from Biodegradable Domestic Waste for Efficient Total Chromium Removal from Aqueous Environment: Spectroscopic and Adsorption Study","authors":"Vandana Saxena, Ashish Kumar Singh, Atul Srivastava, Anushree Srivastava","doi":"10.46488/nept.2024.v23i02.032","DOIUrl":null,"url":null,"abstract":"Chromium contamination in water bodies poses severe risks to both the environment and human health. This research introduces an innovative solution to this challenge by creating a vapor-activated carbosorbent from biodegradable household waste. The efficacy of this adsorbent in removing total chromium through batch methods from aqueous solutions was investigated. Surface analysis using scanning electron microscopy (SEM) exhibited a porous structure, while Fourier-transform infrared spectroscopy (FTIR) identified distinct functional groups on the surface. The point of zero charge (PZC), determined at 6.95, revealed the adsorbent’s surface chemistry. Impressively, the synthesized carbosorbent exhibited significant adsorption capacities of 23.08 mg.g-1 for Cr(III) and 24.84 mg.g-1 for Cr(VI) under optimal conditions. The Langmuir isotherm model illustrated a monolayer adsorption mechanism aligned with the pseudo-second-order kinetic model, confirming chemisorption. Thermodynamic analysis disclosed favorable and spontaneous chromium adsorption. Negative ΔG° values affirmed the spontaneity, while the exothermic nature of the process was signified by the positive ΔH° value, indicating heat release. Increased randomness at the solid-liquid interface, indicated by the positive ΔS° value, underscored the enhanced affinity between the adsorbent and adsorbate. This study exemplifies the potential of the vapor-activated carbosorbent as an efficient and sustainable remedy for chromium-contaminated water bodies.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"11 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i02.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Chromium contamination in water bodies poses severe risks to both the environment and human health. This research introduces an innovative solution to this challenge by creating a vapor-activated carbosorbent from biodegradable household waste. The efficacy of this adsorbent in removing total chromium through batch methods from aqueous solutions was investigated. Surface analysis using scanning electron microscopy (SEM) exhibited a porous structure, while Fourier-transform infrared spectroscopy (FTIR) identified distinct functional groups on the surface. The point of zero charge (PZC), determined at 6.95, revealed the adsorbent’s surface chemistry. Impressively, the synthesized carbosorbent exhibited significant adsorption capacities of 23.08 mg.g-1 for Cr(III) and 24.84 mg.g-1 for Cr(VI) under optimal conditions. The Langmuir isotherm model illustrated a monolayer adsorption mechanism aligned with the pseudo-second-order kinetic model, confirming chemisorption. Thermodynamic analysis disclosed favorable and spontaneous chromium adsorption. Negative ΔG° values affirmed the spontaneity, while the exothermic nature of the process was signified by the positive ΔH° value, indicating heat release. Increased randomness at the solid-liquid interface, indicated by the positive ΔS° value, underscored the enhanced affinity between the adsorbent and adsorbate. This study exemplifies the potential of the vapor-activated carbosorbent as an efficient and sustainable remedy for chromium-contaminated water bodies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从可生物降解的生活垃圾中提取的生态工程化低成本碳吸附剂用于高效去除水环境中的总铬:光谱和吸附研究
水体中的铬污染对环境和人类健康都构成了严重威胁。本研究通过利用可生物降解的生活垃圾制造一种气相激活的碳吸附剂,为应对这一挑战提出了一种创新的解决方案。研究调查了这种吸附剂通过批量法从水溶液中去除总铬的功效。利用扫描电子显微镜(SEM)进行的表面分析表明该吸附剂具有多孔结构,而傅立叶变换红外光谱(FTIR)则在其表面发现了不同的官能团。测定的零电荷点(PZC)为 6.95,揭示了吸附剂的表面化学性质。令人印象深刻的是,在最佳条件下,合成的碳吸附剂对 Cr(III) 和 Cr(VI) 的吸附容量分别为 23.08 mg.g-1 和 24.84 mg.g-1。朗缪尔等温线模型显示了一种单层吸附机制,与假二阶动力学模型一致,证实了化学吸附作用。热力学分析表明了有利的自发铬吸附。负 ΔG° 值证实了自发吸附,而正 ΔH° 值则表明了这一过程的放热性质,即放出热量。固液界面的随机性增加(ΔS° 值为正),表明吸附剂和吸附物之间的亲和力增强。这项研究证明了蒸汽活化吸附剂作为铬污染水体的一种高效、可持续补救措施的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Environment and Pollution Technology
Nature Environment and Pollution Technology Environmental Science-Environmental Science (all)
CiteScore
1.20
自引率
0.00%
发文量
159
审稿时长
36 weeks
期刊介绍: The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment
期刊最新文献
Optimization of Aviation Biofuel Development as Sustainable Energy Through Simulation of System Dynamics Modeling Evaluation of Grid-Based Aridity Indices in Classifying Aridity Zones in Iraq Elucidating Mycotoxin-Producing Aspergillus Species in River Water: An Advanced Molecular Diagnostic Study for the Assessment of Ecological Health and Contamination Risk Heavy Metal Concentration in Fish Species Clarias gariepinus (Catfish) and Oreochromis niloticus (Nile Tilapia) from Anambra River, Nigeria Impact of Hydraulic Developments on the Quality of Surface Water in the Mafragh Watershed, El Tarf, Algeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1