Stochastic simulation of exciton transport in semiconductor heterostructures

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Russian Journal of Numerical Analysis and Mathematical Modelling Pub Date : 2024-06-01 DOI:10.1515/rnam-2024-0014
Karl Sabelfeld, I. Aksyuk
{"title":"Stochastic simulation of exciton transport in semiconductor heterostructures","authors":"Karl Sabelfeld, I. Aksyuk","doi":"10.1515/rnam-2024-0014","DOIUrl":null,"url":null,"abstract":"\n Stochastic simulation algorithm for solving exciton transport in a 3D layered semiconductor heterostructure is developed. The problem is governed by a transient drift-diffusion-recombination equation with Dirichlet and Neumann mixed boundary conditions. The semiconductor is represented as an infinite multilayer of finite thickness along the transverse coordinate z. The multilayer is composed by a set of sublayers of different materials so that the excitons have different diffusion and recombination coefficients in each layer. Continuity of solutions and fluxes at the plane interfaces between layers are imposed. The stochastic simulation algorithm solves the transport problem by tracking exciton trajectories in accordance with the probability distributions represented through the Green function of the problem in each sublayer. The method is meshless, the excitons jump only over the plane boundaries of the layers. This explains the high efficiency of the method. Simulation results for transport problems with different mixed boundary conditions are presented.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2024-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic simulation algorithm for solving exciton transport in a 3D layered semiconductor heterostructure is developed. The problem is governed by a transient drift-diffusion-recombination equation with Dirichlet and Neumann mixed boundary conditions. The semiconductor is represented as an infinite multilayer of finite thickness along the transverse coordinate z. The multilayer is composed by a set of sublayers of different materials so that the excitons have different diffusion and recombination coefficients in each layer. Continuity of solutions and fluxes at the plane interfaces between layers are imposed. The stochastic simulation algorithm solves the transport problem by tracking exciton trajectories in accordance with the probability distributions represented through the Green function of the problem in each sublayer. The method is meshless, the excitons jump only over the plane boundaries of the layers. This explains the high efficiency of the method. Simulation results for transport problems with different mixed boundary conditions are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半导体异质结构中激子传输的随机模拟
开发了解决三维层状半导体异质结构中激子传输问题的随机模拟算法。该问题受瞬态漂移-扩散-再结合方程支配,具有 Dirichlet 和 Neumann 混合边界条件。该多层结构由一组不同材料的子层组成,因此激子在各层中的扩散和重组系数各不相同。在层与层之间的平面界面上,求解和通量是连续的。随机模拟算法根据每个子层中问题的格林函数所代表的概率分布,通过跟踪激子轨迹来解决传输问题。该方法是无网格的,激子只在层的平面边界上跃迁。这就是该方法高效的原因。本文介绍了不同混合边界条件下传输问题的模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
期刊最新文献
Nitrogen cycle module for INM RAS climate model Evaluation of 2010 heatwave prediction skill by SLNE coupled model Numerical solution of optimal control problems for linear systems of ordinary differential equations Two-phase flow simulation algorithm for numerical estimation of relative phase permeability curves of porous materials Numerical modelling of large elasto-plastic multi-material deformations on Eulerian grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1