Improving the Performance of Transparent Conducting Electrodes Based on Cu Nanowires

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-01 DOI:10.22146/ijc.85156
Dedi Mardiansyah, Sri Rahayu Alfitri Usna, S. Nafisah, H. Harsojo, R. G. Hatika
{"title":"Improving the Performance of Transparent Conducting Electrodes Based on Cu Nanowires","authors":"Dedi Mardiansyah, Sri Rahayu Alfitri Usna, S. Nafisah, H. Harsojo, R. G. Hatika","doi":"10.22146/ijc.85156","DOIUrl":null,"url":null,"abstract":"The fabrication of transparent conducting electrodes (TCEs) is dominated by indium tin oxide (ITO). Some efforts are being made to find alternative materials as a substitute for ITO. Cu nanowire (CuNWs) is an equivalent candidate as a replacement for ITO but has a weakness that is easily oxidized. In this contribution, we report an increase in the performance of CuNWs, which can reduce the effect of oxidation. In this study, we provide a coating of CuNWs using PVP, PVA, and silver nanoparticles (AgNPs). The morphology, formation structure, and conductivity of CuNWs have been investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and IV meter. The average length and diameter of the CuNWs were 5.5 μm and 120 nm, respectively. The transparent conducting has a stable conductivity after coating with PVP, PVA and AgNPs. The application of transparent conducting electrodes are sensors, electronic devices, solar cells, and organic light-emitting diodes (OLEDs).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"32 3","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.85156","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of transparent conducting electrodes (TCEs) is dominated by indium tin oxide (ITO). Some efforts are being made to find alternative materials as a substitute for ITO. Cu nanowire (CuNWs) is an equivalent candidate as a replacement for ITO but has a weakness that is easily oxidized. In this contribution, we report an increase in the performance of CuNWs, which can reduce the effect of oxidation. In this study, we provide a coating of CuNWs using PVP, PVA, and silver nanoparticles (AgNPs). The morphology, formation structure, and conductivity of CuNWs have been investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and IV meter. The average length and diameter of the CuNWs were 5.5 μm and 120 nm, respectively. The transparent conducting has a stable conductivity after coating with PVP, PVA and AgNPs. The application of transparent conducting electrodes are sensors, electronic devices, solar cells, and organic light-emitting diodes (OLEDs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高基于铜纳米线的透明导电电极的性能
透明导电电极(TCE)的制造主要使用氧化铟锡(ITO)。人们正在努力寻找可替代 ITO 的材料。铜纳米线(CuNWs)是替代氧化铟锡(ITO)的理想材料,但其弱点是容易被氧化。在这篇论文中,我们报告了 CuNWs 性能的提高,它可以减少氧化的影响。在这项研究中,我们使用 PVP、PVA 和纳米银粒子(AgNPs)对 CuNWs 进行了涂层。通过扫描电子显微镜(SEM)、X 射线衍射(XRD)和 IV 仪研究了 CuNWs 的形态、形成结构和导电性。CuNWs 的平均长度和直径分别为 5.5 μm 和 120 nm。透明导电体在涂覆 PVP、PVA 和 AgNPs 后具有稳定的导电性。透明导电电极的应用领域包括传感器、电子器件、太阳能电池和有机发光二极管(OLED)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Programmable Aptamer-Controlled Fibrinogenesis Using Dynamic DNA Networks and Synthetic Transcription Machineries Chalcogenoviologen-Based Surface and Interface Chemistry for Optoelectronic Applications: From Molecular Design to Functional Devices. Issue Publication Information Issue Editorial Masthead Regulating Lanthanide Single-Molecule Magnets with Coordination Geometry and Organometallic Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1