{"title":"Integral sliding mode-based event-triggered optimal fault tolerant tracking control of continuous-time nonlinear systems","authors":"Yongwei Zhang , Shunchao Zhang","doi":"10.1016/j.ejcon.2024.101021","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the integral sliding mode-based event-triggered optimal fault tolerant tracking control of continuous-time nonlinear systems is investigated via adaptive dynamic programming. The developed control scheme consists of two parts, i.e., integral sliding mode control and event-triggered optimal tracking control. For the first part, an integral sliding mode controller is designed to eliminate the affect of actuator fault and the dynamics of nominal nonlinear systems is obtained. For the second part, a novel quadratic cost function with respect to the tracking error and its dynamics is developed such that the feedforward control law or the discount factor is not required, which reduces the complexity of the control method and guarantees the tracking performance. Moreover, a critic-only structure is established to obtain the solution of tracking Hamilton–Jacobi–Bellman equation. It should be noted that the optimal tracking control law is updated only at triggering moments in order to preserve computing and communication resources. Finally, the effectiveness of the present approach is demonstrated through simulation examples of a robotic arm system and a Van der Pol circuit system.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"79 ","pages":"Article 101021"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024000815","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the integral sliding mode-based event-triggered optimal fault tolerant tracking control of continuous-time nonlinear systems is investigated via adaptive dynamic programming. The developed control scheme consists of two parts, i.e., integral sliding mode control and event-triggered optimal tracking control. For the first part, an integral sliding mode controller is designed to eliminate the affect of actuator fault and the dynamics of nominal nonlinear systems is obtained. For the second part, a novel quadratic cost function with respect to the tracking error and its dynamics is developed such that the feedforward control law or the discount factor is not required, which reduces the complexity of the control method and guarantees the tracking performance. Moreover, a critic-only structure is established to obtain the solution of tracking Hamilton–Jacobi–Bellman equation. It should be noted that the optimal tracking control law is updated only at triggering moments in order to preserve computing and communication resources. Finally, the effectiveness of the present approach is demonstrated through simulation examples of a robotic arm system and a Van der Pol circuit system.
本文通过自适应动态编程研究了连续时间非线性系统基于积分滑动模态的事件触发最优容错跟踪控制。所开发的控制方案由两部分组成,即积分滑模控制和事件触发优化跟踪控制。在第一部分中,设计了一个积分滑动模式控制器来消除执行器故障的影响,并获得了标称非线性系统的动力学特性。在第二部分中,开发了一种与跟踪误差及其动态有关的新型二次成本函数,从而无需前馈控制法或折扣因子,这降低了控制方法的复杂性,并保证了跟踪性能。此外,还建立了唯批判结构,以获得跟踪 Hamilton-Jacobi-Bellman 方程的解。值得注意的是,为了节省计算和通信资源,最优跟踪控制法则仅在触发时刻更新。最后,通过机械臂系统和 Van der Pol 电路系统的仿真实例,证明了本方法的有效性。
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.