{"title":"The effect of the endothelial surface layer on cell–cell interactions in microvessel bifurcations","authors":"Carlson Triebold, Jared Barber","doi":"10.1007/s10237-024-01863-1","DOIUrl":null,"url":null,"abstract":"<div><p>Red blood cells (RBCs) carry oxygen and make up 40–45% of blood by volume in large vessels down to 10% or less in smaller capillaries. Because of their finite size and large volume fraction, they are heterogeneously distributed throughout the body. This is partially because RBCs are distributed or partitioned nonuniformly at diverging vessel bifurcations where blood flows from one vessel into two. Despite its increased recognition as an important player in the microvasculature, few studies have explored how the endothelial surface layer (ESL; a vessel wall coating) may affect partitioning and RBC dynamics at diverging vessel bifurcations. Here, we use a mathematical and computational model to consider how altering ESL properties, as can occur in pathological scenarios, change RBC partitioning, deformation, and penetration of the ESL. The two-dimensional finite element model considers pairs of cells, represented by interconnected viscoelastic elements, passing through an ESL-lined diverging vessel bifurcation. The properties of the ESL include the hydraulic resistivity and an osmotic pressure difference modeling how easily fluid flows through the ESL and how easily the ESL is structurally compressed, respectively. We find that cell–cell interaction leads to more uniform partitioning and greatly enhances the effects of ESL properties, especially for deformation and penetration. This includes the trend that increased hydraulic resistivity leads to more uniform partitioning, increased deformation, and decreased penetration. It also includes the trend that decreased osmotic pressure increases penetration.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1695 - 1721"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01863-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Red blood cells (RBCs) carry oxygen and make up 40–45% of blood by volume in large vessels down to 10% or less in smaller capillaries. Because of their finite size and large volume fraction, they are heterogeneously distributed throughout the body. This is partially because RBCs are distributed or partitioned nonuniformly at diverging vessel bifurcations where blood flows from one vessel into two. Despite its increased recognition as an important player in the microvasculature, few studies have explored how the endothelial surface layer (ESL; a vessel wall coating) may affect partitioning and RBC dynamics at diverging vessel bifurcations. Here, we use a mathematical and computational model to consider how altering ESL properties, as can occur in pathological scenarios, change RBC partitioning, deformation, and penetration of the ESL. The two-dimensional finite element model considers pairs of cells, represented by interconnected viscoelastic elements, passing through an ESL-lined diverging vessel bifurcation. The properties of the ESL include the hydraulic resistivity and an osmotic pressure difference modeling how easily fluid flows through the ESL and how easily the ESL is structurally compressed, respectively. We find that cell–cell interaction leads to more uniform partitioning and greatly enhances the effects of ESL properties, especially for deformation and penetration. This includes the trend that increased hydraulic resistivity leads to more uniform partitioning, increased deformation, and decreased penetration. It also includes the trend that decreased osmotic pressure increases penetration.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.