Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-06-06 DOI:10.1038/s41467-024-49172-6
Huazhang Guo, Yuhao Lu, Zhendong Lei, Hong Bao, Mingwan Zhang, Zeming Wang, Cuntai Guan, Bijun Tang, Zheng Liu, Liang Wang
{"title":"Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots.","authors":"Huazhang Guo, Yuhao Lu, Zhendong Lei, Hong Bao, Mingwan Zhang, Zeming Wang, Cuntai Guan, Bijun Tang, Zheng Liu, Liang Wang","doi":"10.1038/s41467-024-49172-6","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon quantum dots (CQDs) have versatile applications in luminescence, whereas identifying optimal synthesis conditions has been challenging due to numerous synthesis parameters and multiple desired outcomes, creating an enormous search space. In this study, we present a novel multi-objective optimization strategy utilizing a machine learning (ML) algorithm to intelligently guide the hydrothermal synthesis of CQDs. Our closed-loop approach learns from limited and sparse data, greatly reducing the research cycle and surpassing traditional trial-and-error methods. Moreover, it also reveals the intricate links between synthesis parameters and target properties and unifies the objective function to optimize multiple desired properties like full-color photoluminescence (PL) wavelength and high PL quantum yields (PLQY). With only 63 experiments, we achieve the synthesis of full-color fluorescent CQDs with high PLQY exceeding 60% across all colors. Our study represents a significant advancement in ML-guided CQDs synthesis, setting the stage for developing new materials with multiple desired properties.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-49172-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon quantum dots (CQDs) have versatile applications in luminescence, whereas identifying optimal synthesis conditions has been challenging due to numerous synthesis parameters and multiple desired outcomes, creating an enormous search space. In this study, we present a novel multi-objective optimization strategy utilizing a machine learning (ML) algorithm to intelligently guide the hydrothermal synthesis of CQDs. Our closed-loop approach learns from limited and sparse data, greatly reducing the research cycle and surpassing traditional trial-and-error methods. Moreover, it also reveals the intricate links between synthesis parameters and target properties and unifies the objective function to optimize multiple desired properties like full-color photoluminescence (PL) wavelength and high PL quantum yields (PLQY). With only 63 experiments, we achieve the synthesis of full-color fluorescent CQDs with high PLQY exceeding 60% across all colors. Our study represents a significant advancement in ML-guided CQDs synthesis, setting the stage for developing new materials with multiple desired properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在机器学习指导下实现全色高量子产率碳量子点。
碳量子点(CQDs)在发光领域有着广泛的应用,但由于合成参数众多,且存在多种预期结果,从而产生了巨大的搜索空间,因此确定最佳合成条件一直具有挑战性。在本研究中,我们提出了一种新颖的多目标优化策略,利用机器学习(ML)算法智能指导 CQDs 的水热合成。我们的闭环方法从有限的稀疏数据中学习,大大缩短了研究周期,超越了传统的试错法。此外,它还揭示了合成参数与目标特性之间错综复杂的联系,并统一了目标函数,以优化多种预期特性,如全色光致发光(PL)波长和高PL量子产率(PLQY)。仅用 63 次实验,我们就合成了全色荧光 CQD,所有颜色的高 PLQY 均超过 60%。我们的研究代表了 ML 引导的 CQDs 合成技术的重大进步,为开发具有多种所需特性的新材料奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
A data science roadmap for open science organizations engaged in early-stage drug discovery. Future trends of marine fish biomass distributions from the North Sea to the Barents Sea. Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Stable peptide-assembled nanozyme mimicking dual antifungal actions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1