Antonio Masone, Chiara Zucchelli, Enrico Caruso, Giovanna Musco, Roberto Chiesa
{"title":"Therapeutic targeting of cellular prion protein: toward the development of dual mechanism anti-prion compounds.","authors":"Antonio Masone, Chiara Zucchelli, Enrico Caruso, Giovanna Musco, Roberto Chiesa","doi":"10.4103/NRR.NRR-D-24-00181","DOIUrl":null,"url":null,"abstract":"<p><p>PrP Sc , a misfolded, aggregation-prone isoform of the cellular prion protein (PrP C ), is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals. PrP Sc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, posing challenges for the development of effective therapies. Since PrP C is the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity, it represents an attractive therapeutic target for prion diseases. In this minireview, we briefly outline the approaches to target PrP C and discuss our recent identification of Zn(II)-BnPyP, a PrP C -targeting porphyrin with an unprecedented bimodal mechanism of action. We argue that in-depth understanding of the molecular mechanism by which Zn(II)-BnPyP targets PrP C may lead toward the development of a new class of dual mechanism anti-prion compounds.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1009-1014"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-00181","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PrP Sc , a misfolded, aggregation-prone isoform of the cellular prion protein (PrP C ), is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals. PrP Sc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, posing challenges for the development of effective therapies. Since PrP C is the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity, it represents an attractive therapeutic target for prion diseases. In this minireview, we briefly outline the approaches to target PrP C and discuss our recent identification of Zn(II)-BnPyP, a PrP C -targeting porphyrin with an unprecedented bimodal mechanism of action. We argue that in-depth understanding of the molecular mechanism by which Zn(II)-BnPyP targets PrP C may lead toward the development of a new class of dual mechanism anti-prion compounds.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.