β-Lapachone promotes the recruitment and polarization of tumor-associated neutrophils (TANs) toward an antitumor (N1) phenotype in NQO1-positive cancers.

IF 6.5 2区 医学 Q1 IMMUNOLOGY Oncoimmunology Pub Date : 2024-06-04 eCollection Date: 2024-01-01 DOI:10.1080/2162402X.2024.2363000
Soumya Tumbath, Lingxiang Jiang, Xiaoguang Li, Taolan Zhang, Kashif Rafiq Zahid, Ye Zhao, Hao Zhou, Zhijun Yin, Tao Lu, Shu Jiang, Yaomin Chen, Xiang Chen, Yang-Xin Fu, Xiumei Huang
{"title":"β-Lapachone promotes the recruitment and polarization of tumor-associated neutrophils (TANs) toward an antitumor (N1) phenotype in NQO1-positive cancers.","authors":"Soumya Tumbath, Lingxiang Jiang, Xiaoguang Li, Taolan Zhang, Kashif Rafiq Zahid, Ye Zhao, Hao Zhou, Zhijun Yin, Tao Lu, Shu Jiang, Yaomin Chen, Xiang Chen, Yang-Xin Fu, Xiumei Huang","doi":"10.1080/2162402X.2024.2363000","DOIUrl":null,"url":null,"abstract":"<p><p>NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. β-Lapachone (β-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between β-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that β-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with β-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of β-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8<sup>+</sup> T cell proliferation. β-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-β expression and reduced TGF-β cytokine expression, along with increased CD95 and CD54 surface markers. β-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into β-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by β-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the β-Lap-induced antitumor activity against NQO1-positive murine tumors.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2363000"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2024.2363000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. β-Lapachone (β-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between β-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that β-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with β-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of β-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8+ T cell proliferation. β-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-β expression and reduced TGF-β cytokine expression, along with increased CD95 and CD54 surface markers. β-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into β-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by β-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the β-Lap-induced antitumor activity against NQO1-positive murine tumors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 NQO1 阳性的癌症中,β-拉帕醌能促进肿瘤相关中性粒细胞(TANs)的募集和极化,使其趋向抗肿瘤(N1)表型。
NAD(P)H:醌氧化还原酶1(NQO1)在大多数实体瘤中过度表达,成为一种有希望的肿瘤选择性杀伤靶点。β-拉帕醌(β-Lap)是一种可生物活化的 NQO1 药物,通过诱导免疫原性细胞死亡(ICD)和增强肿瘤免疫原性,对 NQO1 阳性癌细胞有显著的抗肿瘤作用。然而,β-Lap-介导的抗肿瘤免疫反应与中性粒细胞(新型抗原递呈细胞(APC))之间的相互作用仍然未知。本研究表明,β-Lap 通过显著增加细胞内 ROS 的形成和诱导 DNA 双股断裂(DSB),导致 DNA 损伤,从而选择性地杀死 NQO1 阳性的小鼠肿瘤细胞。用β-Lap治疗可有效根除免疫功能正常的小鼠肿瘤,并显著增加肿瘤相关中性粒细胞(TANs)对肿瘤微环境(TME)的浸润,这对药物的疗效起着至关重要的作用。此外,β-Lap 诱导的抗原介质的存在会导致骨髓来源的中性粒细胞(BMNs)直接杀死小鼠肿瘤细胞,帮助树突状细胞(DCs)招募并显著增强 CD8+ T 细胞增殖。β-Lap处理还能促使TANs向抗肿瘤N1表型极化,其特点是IFN-β表达升高,TGF-β细胞因子表达降低,CD95和CD54表面标记增加。β-Lap处理还能诱导N1 TAN介导的T细胞交叉priming。HMGB1/TLR4/MyD88信号级联影响了中性粒细胞对β-Lap处理过的肿瘤的浸润。阻断这一级联反应或减少中性粒细胞浸润可消除β-Lap治疗诱导的抗原特异性T细胞反应。总之,这项研究全面揭示了肿瘤浸润的中性粒细胞在β-Lap诱导的针对NQO1阳性小鼠肿瘤的抗肿瘤活性中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oncoimmunology
Oncoimmunology ONCOLOGYIMMUNOLOGY-IMMUNOLOGY
CiteScore
12.50
自引率
2.80%
发文量
276
审稿时长
24 weeks
期刊介绍: OncoImmunology is a dynamic, high-profile, open access journal that comprehensively covers tumor immunology and immunotherapy. As cancer immunotherapy advances, OncoImmunology is committed to publishing top-tier research encompassing all facets of basic and applied tumor immunology. The journal covers a wide range of topics, including: -Basic and translational studies in immunology of both solid and hematological malignancies -Inflammation, innate and acquired immune responses against cancer -Mechanisms of cancer immunoediting and immune evasion -Modern immunotherapies, including immunomodulators, immune checkpoint inhibitors, T-cell, NK-cell, and macrophage engagers, and CAR T cells -Immunological effects of conventional anticancer therapies.
期刊最新文献
Hyperdifferentiated murine melanoma cells promote adaptive anti-tumor immunity but activate the immune checkpoint system. An integral membrane constitutively active heparanase enhances the tumor infiltration capability of NK cells. Clinical impact of cancer cachexia on the outcome of patients with non-small cell lung cancer with PD-L1 tumor proportion scores of ≥50% receiving pembrolizumab monotherapy versus immune checkpoint inhibitor with chemotherapy. Characterisation of the tumour microenvironment and PD-L1 granularity reveals the prognostic value of cancer-associated myofibroblasts in non-invasive bladder cancer. Circulating cytokine associations with clinical outcomes in melanoma patients treated with combination nivolumab plus ipilimumab.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1