Mutations in the SLC35C1 gene, contributing to significant differences in fucosylation patterns, may underlie the diverse phenotypic manifestations observed in leukocyte adhesion deficiency type II patients
{"title":"Mutations in the SLC35C1 gene, contributing to significant differences in fucosylation patterns, may underlie the diverse phenotypic manifestations observed in leukocyte adhesion deficiency type II patients","authors":"E. Skurska , B. Szulc , K. Kreczko, M. Olczak","doi":"10.1016/j.biocel.2024.106602","DOIUrl":null,"url":null,"abstract":"<div><p>Congenital disorders of glycosylation (CDG) are a large family of genetic diseases resulting from defects in the synthesis of glycans and the attachment of glycans to macromolecules. The CDG known as leukocyte adhesion deficiency II (LAD II) is an autosomal, recessive disorder caused by mutations in the <em>SLC35C1</em> gene, encoding a transmembrane protein of the Golgi apparatus, involved in GDP-fucose transport from the cytosol to the Golgi lumen. In this study, a cell-based model was used as a tool to characterize the molecular background of a therapy based on a fucose-supplemented diet. Such therapies have been successfully introduced in some (but not all) known cases of LAD II. In this study, the effect of external fucose was analyzed in SLC35C1 KO cell lines, expressing 11 mutated SLC35C1 proteins, previously discovered in patients with an LAD II diagnosis. For many of them, the <em>cis</em>-Golgi subcellular localization was affected; however, some proteins were localized properly. Additionally, although mutated SLC35C1 caused different α-1–6 core fucosylation of N-glycans, which explains previously described, more or less severe disorder symptoms, the differences practically disappeared after external fucose supplementation, with fucosylation restored to the level observed in healthy cells. This indicates that additional fucose in the diet should improve the condition of all patients. Thus, for patients diagnosed with LAD II we advocate careful analysis of particular mutations using the SLC35C1-KO cell line-based model, to predict changes in localization and fucosylation rate. We also recommend searching for additional mutations in the human genome of LAD II patients, when fucose supplementation does not influence patients’ state.</p></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"173 ","pages":"Article 106602"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524000943","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Congenital disorders of glycosylation (CDG) are a large family of genetic diseases resulting from defects in the synthesis of glycans and the attachment of glycans to macromolecules. The CDG known as leukocyte adhesion deficiency II (LAD II) is an autosomal, recessive disorder caused by mutations in the SLC35C1 gene, encoding a transmembrane protein of the Golgi apparatus, involved in GDP-fucose transport from the cytosol to the Golgi lumen. In this study, a cell-based model was used as a tool to characterize the molecular background of a therapy based on a fucose-supplemented diet. Such therapies have been successfully introduced in some (but not all) known cases of LAD II. In this study, the effect of external fucose was analyzed in SLC35C1 KO cell lines, expressing 11 mutated SLC35C1 proteins, previously discovered in patients with an LAD II diagnosis. For many of them, the cis-Golgi subcellular localization was affected; however, some proteins were localized properly. Additionally, although mutated SLC35C1 caused different α-1–6 core fucosylation of N-glycans, which explains previously described, more or less severe disorder symptoms, the differences practically disappeared after external fucose supplementation, with fucosylation restored to the level observed in healthy cells. This indicates that additional fucose in the diet should improve the condition of all patients. Thus, for patients diagnosed with LAD II we advocate careful analysis of particular mutations using the SLC35C1-KO cell line-based model, to predict changes in localization and fucosylation rate. We also recommend searching for additional mutations in the human genome of LAD II patients, when fucose supplementation does not influence patients’ state.
期刊介绍:
IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research.
Topics of interest include, but are not limited to:
-Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism
-Novel insights into disease pathogenesis
-Nanotechnology with implication to biological and medical processes
-Genomics and bioinformatics