{"title":"A Practical Primer on Particle Therapy","authors":"","doi":"10.1016/j.prro.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div><span>Particle therapy is a promising treatment technique that is becoming more commonly used. Although </span>proton beam therapy<span> remains the most commonly used particle therapy, multiple other heavier ions have been used in the preclinical and clinical settings, each with its own unique properties. This practical review aims to summarize the differences between the studied particles, discussing their radiobiological and physical properties with additional review of the available clinical data.</span></div></div><div><h3>Methods and Materials</h3><div>A search was carried out on the PubMed databases with search terms related to each particle. Relevant radiobiology, physics, and clinical studies were included. The articles were summarized to provide a practical resource for practicing clinicians.</div></div><div><h3>Results</h3><div>A total of 113 articles and texts were included in our narrative review. Currently, proton beam therapy has the most data and is the most widely used, followed by carbon, helium, and neutrons. Although oxygen, neon, silicon, and argon have been used clinically, their future use will likely remain limited as monotherapy.</div></div><div><h3>Conclusions</h3><div>This review summarizes the properties of each of the clinically relevant particles. Protons, helium, and carbon will likely remain the most commonly used, although multi-ion therapy is an emerging technique.</div></div>","PeriodicalId":54245,"journal":{"name":"Practical Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879850024001371","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Particle therapy is a promising treatment technique that is becoming more commonly used. Although proton beam therapy remains the most commonly used particle therapy, multiple other heavier ions have been used in the preclinical and clinical settings, each with its own unique properties. This practical review aims to summarize the differences between the studied particles, discussing their radiobiological and physical properties with additional review of the available clinical data.
Methods and Materials
A search was carried out on the PubMed databases with search terms related to each particle. Relevant radiobiology, physics, and clinical studies were included. The articles were summarized to provide a practical resource for practicing clinicians.
Results
A total of 113 articles and texts were included in our narrative review. Currently, proton beam therapy has the most data and is the most widely used, followed by carbon, helium, and neutrons. Although oxygen, neon, silicon, and argon have been used clinically, their future use will likely remain limited as monotherapy.
Conclusions
This review summarizes the properties of each of the clinically relevant particles. Protons, helium, and carbon will likely remain the most commonly used, although multi-ion therapy is an emerging technique.
期刊介绍:
The overarching mission of Practical Radiation Oncology is to improve the quality of radiation oncology practice. PRO''s purpose is to document the state of current practice, providing background for those in training and continuing education for practitioners, through discussion and illustration of new techniques, evaluation of current practices, and publication of case reports. PRO strives to provide its readers content that emphasizes knowledge "with a purpose." The content of PRO includes:
Original articles focusing on patient safety, quality measurement, or quality improvement initiatives
Original articles focusing on imaging, contouring, target delineation, simulation, treatment planning, immobilization, organ motion, and other practical issues
ASTRO guidelines, position papers, and consensus statements
Essays that highlight enriching personal experiences in caring for cancer patients and their families.