Causal inference in the absence of positivity: The role of overlap weights

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-06-07 DOI:10.1002/bimj.202300156
Roland A. Matsouaka, Yunji Zhou
{"title":"Causal inference in the absence of positivity: The role of overlap weights","authors":"Roland A. Matsouaka,&nbsp;Yunji Zhou","doi":"10.1002/bimj.202300156","DOIUrl":null,"url":null,"abstract":"<p>How to analyze data when there is violation of the positivity assumption? Several possible solutions exist in the literature. In this paper, we consider propensity score (PS) methods that are commonly used in observational studies to assess causal treatment effects in the context where the positivity assumption is violated. We focus on and examine four specific alternative solutions to the inverse probability weighting (IPW) trimming and truncation: matching weight (MW), Shannon's entropy weight (EW), overlap weight (OW), and beta weight (BW) estimators.</p><p>We first specify their target population, the population of patients for whom clinical equipoise, that is, where we have sufficient PS overlap. Then, we establish the nexus among the different corresponding weights (and estimators); this allows us to highlight the shared properties and theoretical implications of these estimators. Finally, we introduce their augmented estimators that take advantage of estimating both the propensity score and outcome regression models to enhance the treatment effect estimators in terms of bias and efficiency. We also elucidate the role of the OW estimator as the flagship of all these methods that target the overlap population.</p><p>Our analytic results demonstrate that OW, MW, and EW are preferable to IPW and some cases of BW when there is a moderate or extreme (stochastic or structural) violation of the positivity assumption. We then evaluate, compare, and confirm the finite-sample performance of the aforementioned estimators via Monte Carlo simulations. Finally, we illustrate these methods using two real-world data examples marked by violations of the positivity assumption.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300156","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

How to analyze data when there is violation of the positivity assumption? Several possible solutions exist in the literature. In this paper, we consider propensity score (PS) methods that are commonly used in observational studies to assess causal treatment effects in the context where the positivity assumption is violated. We focus on and examine four specific alternative solutions to the inverse probability weighting (IPW) trimming and truncation: matching weight (MW), Shannon's entropy weight (EW), overlap weight (OW), and beta weight (BW) estimators.

We first specify their target population, the population of patients for whom clinical equipoise, that is, where we have sufficient PS overlap. Then, we establish the nexus among the different corresponding weights (and estimators); this allows us to highlight the shared properties and theoretical implications of these estimators. Finally, we introduce their augmented estimators that take advantage of estimating both the propensity score and outcome regression models to enhance the treatment effect estimators in terms of bias and efficiency. We also elucidate the role of the OW estimator as the flagship of all these methods that target the overlap population.

Our analytic results demonstrate that OW, MW, and EW are preferable to IPW and some cases of BW when there is a moderate or extreme (stochastic or structural) violation of the positivity assumption. We then evaluate, compare, and confirm the finite-sample performance of the aforementioned estimators via Monte Carlo simulations. Finally, we illustrate these methods using two real-world data examples marked by violations of the positivity assumption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺乏正向性的因果推理:重叠权重的作用
当违反正向性假设时,如何分析数据?文献中存在几种可能的解决方案。在本文中,我们考虑了倾向得分(PS)方法,这些方法通常用于观察性研究,以评估违反正向性假设情况下的因果治疗效果。我们关注并研究了反概率加权(IPW)修剪和截断的四种具体替代方案:匹配权重(MW)、香农熵权重(EW)、重叠权重(OW)和贝塔权重(BW)估计器。我们首先明确其目标人群,即临床等效的患者人群,也就是我们有足够 PS 重叠的人群。然后,我们在不同的相应权重(和估计器)之间建立联系;这样我们就能突出这些估计器的共同特性和理论意义。最后,我们介绍了它们的增强估计器,这些估计器利用了倾向得分和结果回归模型的估计优势,在偏差和效率方面增强了治疗效果估计器。我们还阐明了 OW 估计器的作用,它是所有这些方法中针对重叠人群的旗舰方法。我们的分析结果表明,当存在中度或极端(随机或结构性)违反正向性假设的情况时,OW、MW 和 EW 比 IPW 和某些情况下的 BW 更优。然后,我们通过蒙特卡罗模拟对上述估计器的有限样本性能进行评估、比较和确认。最后,我们使用两个以违反正向性假设为特征的实际数据示例来说明这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
Post-Estimation Shrinkage in Full and Selected Linear Regression Models in Low-Dimensional Data Revisited Functional Data Analysis: An Introduction and Recent Developments Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study A Network-Constrain Weibull AFT Model for Biomarkers Discovery Multivariate Scalar on Multidimensional Distribution Regression With Application to Modeling the Association Between Physical Activity and Cognitive Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1