Designing an Autonomous Vehicle Using Sensor Fusion Based on Path Planning and Deep Learning Algorithms

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC SAIEE Africa Research Journal Pub Date : 2024-06-06 DOI:10.23919/SAIEE.2024.10551314
Bhakti Y. Suprapto;Suci Dwijayanti;Dimsyiar M.A. Hafiz;Farhan A. Ardandy;Javen Jonathan
{"title":"Designing an Autonomous Vehicle Using Sensor Fusion Based on Path Planning and Deep Learning Algorithms","authors":"Bhakti Y. Suprapto;Suci Dwijayanti;Dimsyiar M.A. Hafiz;Farhan A. Ardandy;Javen Jonathan","doi":"10.23919/SAIEE.2024.10551314","DOIUrl":null,"url":null,"abstract":"Autonomous electric vehicles use camera sensors for vision-based steering control and detecting both roads and objects. In this study, road and object detection are combined, utilizing the YOLOv8x-seg model trained for 200 epochs, achieving the lowest segmentation loss at 0.53182. Simulation tests demonstrate accurate road and object detection, effective object distance measurement, and real-time road identification for steering control, successfully keeping the vehicle on track with an average object distance measurement error of2.245 m. Route planning for autonomous vehicles is crucial, and the A-Star algorithm is employed to find the optimal route. In real-time tests, when an obstacle is placed between nodes 6 and 7, the A-Star algorithm can reroute from the original path (5, 6, 7, 27, and 28) to a new path (5, 6, 9, 27, and 28). This study demonstrates the vital role of sensor fusion in autonomous vehicles by integrating various sensors. This study focuses on sensor fusion for object-road detection and path planning using the A\n<sup>*</sup>\n algorithm. Real-time tests in two different scenarios demonstrate the successful integration of sensor fusion, enabling the vehicle to follow planned routes. However, some route nodes remain unreachable, requiring occasional driver intervention. These results demonstrate the feasibility of sensor fusion with diverse tasks in third-level autonomous vehicles.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10551314","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10551314/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous electric vehicles use camera sensors for vision-based steering control and detecting both roads and objects. In this study, road and object detection are combined, utilizing the YOLOv8x-seg model trained for 200 epochs, achieving the lowest segmentation loss at 0.53182. Simulation tests demonstrate accurate road and object detection, effective object distance measurement, and real-time road identification for steering control, successfully keeping the vehicle on track with an average object distance measurement error of2.245 m. Route planning for autonomous vehicles is crucial, and the A-Star algorithm is employed to find the optimal route. In real-time tests, when an obstacle is placed between nodes 6 and 7, the A-Star algorithm can reroute from the original path (5, 6, 7, 27, and 28) to a new path (5, 6, 9, 27, and 28). This study demonstrates the vital role of sensor fusion in autonomous vehicles by integrating various sensors. This study focuses on sensor fusion for object-road detection and path planning using the A * algorithm. Real-time tests in two different scenarios demonstrate the successful integration of sensor fusion, enabling the vehicle to follow planned routes. However, some route nodes remain unreachable, requiring occasional driver intervention. These results demonstrate the feasibility of sensor fusion with diverse tasks in third-level autonomous vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于路径规划和深度学习算法的传感器融合设计自动驾驶汽车
自动驾驶电动汽车使用摄像头传感器进行基于视觉的转向控制,并同时检测道路和物体。本研究将道路和物体检测结合起来,利用经过 200 次历时训练的 YOLOv8x-seg 模型,实现了 0.53182 的最低分割损失。仿真测试表明,道路和物体检测准确,物体距离测量有效,用于转向控制的实时道路识别成功地使车辆保持在轨道上,平均物体距离测量误差为 2.245 米。在实时测试中,当 6 号和 7 号节点之间有障碍物时,A-Star 算法可以从原来的路径(5、6、7、27 和 28)重新选择新路径(5、6、9、27 和 28)。本研究通过整合各种传感器,证明了传感器融合在自动驾驶汽车中的重要作用。本研究的重点是使用 A* 算法对目标-道路检测和路径规划进行传感器融合。在两种不同场景下进行的实时测试表明,传感器融合的成功整合使车辆能够按照规划的路线行驶。不过,有些路线节点仍然无法到达,需要驾驶员偶尔进行干预。这些结果表明,在第三级自动驾驶汽车中执行不同任务的传感器融合是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SAIEE Africa Research Journal
SAIEE Africa Research Journal ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
29
期刊最新文献
Back cover Table of contents Front cover Notes Interval type-II fuzzy logic control of neutral DC compensation method to moderate DC bias in power transformer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1