Generative Network Layer for Communication Systems With Artificial Intelligence

Mathias Thorsager;Israel Leyva-Mayorga;Beatriz Soret;Petar Popovski
{"title":"Generative Network Layer for Communication Systems With Artificial Intelligence","authors":"Mathias Thorsager;Israel Leyva-Mayorga;Beatriz Soret;Petar Popovski","doi":"10.1109/LNET.2024.3354114","DOIUrl":null,"url":null,"abstract":"The traditional role of the network layer is the transfer of packet replicas from source to destination through intermediate network nodes. We present a generative network layer that uses Generative AI (GenAI) at intermediate or edge network nodes and analyze its impact on the required data rates in the network. We conduct a case study where the GenAI-aided nodes generate images from prompts that consist of substantially compressed latent representations. The results from network flow analyses under image quality constraints show that the generative network layer can achieve an improvement of more than 100% in terms of the required data rate.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 2","pages":"82-86"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10399967/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional role of the network layer is the transfer of packet replicas from source to destination through intermediate network nodes. We present a generative network layer that uses Generative AI (GenAI) at intermediate or edge network nodes and analyze its impact on the required data rates in the network. We conduct a case study where the GenAI-aided nodes generate images from prompts that consist of substantially compressed latent representations. The results from network flow analyses under image quality constraints show that the generative network layer can achieve an improvement of more than 100% in terms of the required data rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能通信系统的生成网络层
网络层的传统角色是通过中间网络节点将数据包副本从源传输到目的地。我们提出了一种在中间或边缘网络节点使用生成式人工智能(GenAI)的生成式网络层,并分析了它对网络所需数据速率的影响。我们进行了一项案例研究,GenAI 辅助节点根据提示生成图像,这些提示由大量压缩的潜在表征组成。在图像质量限制条件下进行的网络流量分析结果表明,生成网络层可将所需数据传输率提高 100%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Networking Letters Vol. 6 Table of Contents IEEE Networking Letters Publication Information IEEE Networking Letters Society Information Editorial SI on Advances in AI for 6G Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1