{"title":"Targeting small druggable compounds against 3RZE histamine H1 receptor as potential of anti-allergic drug applying molecular modeling approach","authors":"Adeel Akram, Chia-Hung Su, Chun-Chong Fu","doi":"10.1186/s43094-024-00646-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Allergic disorders, prevalent global health concerns, afflict a substantial portion of the world’s population. These maladies result from an exaggerated immune system response to ordinarily innocuous substances, such as pollen, dust mites, and specific dietary components. Clinical manifestations of this heightened immune response include itching, swelling, and respiratory impairment, often accompanied by releasing mediators like histamine. The pathophysiological mechanisms of allergy disorders are intricate, arising from a complex interplay between genetic and environmental factors. While clinical presentations may vary, all allergy conditions share a common foundation in the dysregulated immune response to allergens.</p><h3>Result</h3><p>The current aim of this study was to identify innovative anti-allergic agents capable of inhibiting histamine and effectively mitigating allergic reactions by utilizing the computer-aided drug design approach by discovery studio (DS) 2022 v 23.1.1 package. The overarching aim was identifying potential drug candidates targeting the active site within the histamine H1 receptor complex; therefore, a collection of 4000 small druggable compounds was curated from ZINC, PubChem, and DRUG BANK databases sources. Four compounds appeared as promising candidates after assessing docking scores and binding energies. Notably, Compound ID 34154, recognized as tymazoline, showed the highest affinity for the H1 receptor of 3RZE, suggesting it may be the most promising choice for more research. Further chemoinformatic and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses were conducted to assess the drug-like qualities of this chosen molecule. In addition, bioisosteric substitution techniques were employed to enhance tymazoline’s ADMET characteristics.</p><h3>Conclusion</h3><p>Tymazoline shows strong binding affinity with 3RZE and verified all the drug-likeness criteria to inhibit the allergic disorders. Furthermore, molecular dynamics (MD) studies corroborated tymazoline’s potential as an anti-allergic agent, demonstrating contact between the ligand and the receptor that is well defined and stable.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00646-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-024-00646-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Allergic disorders, prevalent global health concerns, afflict a substantial portion of the world’s population. These maladies result from an exaggerated immune system response to ordinarily innocuous substances, such as pollen, dust mites, and specific dietary components. Clinical manifestations of this heightened immune response include itching, swelling, and respiratory impairment, often accompanied by releasing mediators like histamine. The pathophysiological mechanisms of allergy disorders are intricate, arising from a complex interplay between genetic and environmental factors. While clinical presentations may vary, all allergy conditions share a common foundation in the dysregulated immune response to allergens.
Result
The current aim of this study was to identify innovative anti-allergic agents capable of inhibiting histamine and effectively mitigating allergic reactions by utilizing the computer-aided drug design approach by discovery studio (DS) 2022 v 23.1.1 package. The overarching aim was identifying potential drug candidates targeting the active site within the histamine H1 receptor complex; therefore, a collection of 4000 small druggable compounds was curated from ZINC, PubChem, and DRUG BANK databases sources. Four compounds appeared as promising candidates after assessing docking scores and binding energies. Notably, Compound ID 34154, recognized as tymazoline, showed the highest affinity for the H1 receptor of 3RZE, suggesting it may be the most promising choice for more research. Further chemoinformatic and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses were conducted to assess the drug-like qualities of this chosen molecule. In addition, bioisosteric substitution techniques were employed to enhance tymazoline’s ADMET characteristics.
Conclusion
Tymazoline shows strong binding affinity with 3RZE and verified all the drug-likeness criteria to inhibit the allergic disorders. Furthermore, molecular dynamics (MD) studies corroborated tymazoline’s potential as an anti-allergic agent, demonstrating contact between the ligand and the receptor that is well defined and stable.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.