Early detection and stratification of colorectal cancer using plasma cell-free DNA fragmentomic profiling

IF 3.4 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genomics Pub Date : 2024-06-05 DOI:10.1016/j.ygeno.2024.110876
Jiyuan Zhou , Yuanke Pan , Shubing Wang , Guoqiang Wang , Chengxin Gu , Jinxin Zhu , Zhenlin Tan , Qixian Wu , Weihuang He , Xiaohui Lin , Shu Xu , Kehua Yuan , Ziwen Zheng , Xiaoqing Gong , Chenhao JiangHe , Zhoujian Han , Bingding Huang , Ruyun Ruan , Mingji Feng , Pin Cui , Hui Yang
{"title":"Early detection and stratification of colorectal cancer using plasma cell-free DNA fragmentomic profiling","authors":"Jiyuan Zhou ,&nbsp;Yuanke Pan ,&nbsp;Shubing Wang ,&nbsp;Guoqiang Wang ,&nbsp;Chengxin Gu ,&nbsp;Jinxin Zhu ,&nbsp;Zhenlin Tan ,&nbsp;Qixian Wu ,&nbsp;Weihuang He ,&nbsp;Xiaohui Lin ,&nbsp;Shu Xu ,&nbsp;Kehua Yuan ,&nbsp;Ziwen Zheng ,&nbsp;Xiaoqing Gong ,&nbsp;Chenhao JiangHe ,&nbsp;Zhoujian Han ,&nbsp;Bingding Huang ,&nbsp;Ruyun Ruan ,&nbsp;Mingji Feng ,&nbsp;Pin Cui ,&nbsp;Hui Yang","doi":"10.1016/j.ygeno.2024.110876","DOIUrl":null,"url":null,"abstract":"<div><p>Timely accurate and cost-efficient detection of colorectal cancer (CRC) is of great clinical importance. This study aims to establish prediction models for detecting CRC using plasma cell-free DNA (cfDNA) fragmentomic features. Whole-genome sequencing (WGS) was performed on cfDNA from 620 participants, including healthy individuals, patients with benign colorectal diseases and CRC patients. Using WGS data, three machine learning methods were compared to build prediction models for the stratification of CRC patients. The optimal model to discriminate CRC patients of all stages from healthy individuals achieved a sensitivity of 92.31% and a specificity of 91.14%, while the model to separate early-stage CRC patients (stage 0-II) from healthy individuals achieved a sensitivity of 88.8% and a specificity of 96.2%. Additionally, the cfDNA fragmentation profiles reflected disease-specific genomic alterations in CRC. Overall, this study suggests that cfDNA fragmentation profiles may potentially become a noninvasive approach for the detection and stratification of CRC.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 4","pages":"Article 110876"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324000971/pdfft?md5=9215668aa701ceca2567affa9cc981f2&pid=1-s2.0-S0888754324000971-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324000971","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Timely accurate and cost-efficient detection of colorectal cancer (CRC) is of great clinical importance. This study aims to establish prediction models for detecting CRC using plasma cell-free DNA (cfDNA) fragmentomic features. Whole-genome sequencing (WGS) was performed on cfDNA from 620 participants, including healthy individuals, patients with benign colorectal diseases and CRC patients. Using WGS data, three machine learning methods were compared to build prediction models for the stratification of CRC patients. The optimal model to discriminate CRC patients of all stages from healthy individuals achieved a sensitivity of 92.31% and a specificity of 91.14%, while the model to separate early-stage CRC patients (stage 0-II) from healthy individuals achieved a sensitivity of 88.8% and a specificity of 96.2%. Additionally, the cfDNA fragmentation profiles reflected disease-specific genomic alterations in CRC. Overall, this study suggests that cfDNA fragmentation profiles may potentially become a noninvasive approach for the detection and stratification of CRC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用无血浆细胞 DNA 片段组图谱对结直肠癌进行早期检测和分层。
及时准确、经济高效地检测出结直肠癌(CRC)具有重要的临床意义。本研究旨在利用血浆无细胞 DNA(cfDNA)片段组特征建立检测 CRC 的预测模型。研究人员对620名参与者的cfDNA进行了全基因组测序(WGS),其中包括健康人、良性结直肠疾病患者和CRC患者。利用 WGS 数据,比较了三种机器学习方法,以建立对 CRC 患者进行分层的预测模型。区分各期 CRC 患者与健康人的最佳模型灵敏度为 92.31%,特异度为 91.14%;区分早期 CRC 患者(0-II 期)与健康人的模型灵敏度为 88.8%,特异度为 96.2%。此外,cfDNA 片段图谱还反映了 CRC 中特定疾病的基因组改变。总之,这项研究表明,cfDNA 片段图谱有可能成为检测和分层 CRC 的一种无创方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genomics
Genomics 生物-生物工程与应用微生物
CiteScore
9.60
自引率
2.30%
发文量
260
审稿时长
60 days
期刊介绍: Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation. As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
期刊最新文献
Identification of CCR7 as a potential biomarker in polycystic ovary syndrome through transcriptome sequencing and integrated bioinformatics. Rapid sequencing and identification for 18-STRs long amplicon panel using portable devices and nanopore sequencer. Retraction notice to "LncRNA HOTAIR regulates the expression of E-cadherin to affect nasopharyngeal carcinoma progression by recruiting histone methylase EZH2 to mediate H3K27 trimethylation" [Genomics Volume 113, Issue 4, July 2021, Pages 2276-2289]. "Genome-based in silico assessment of biosynthetic gene clusters in Planctomycetota: Evidences of its wide divergent nature". Unveiling the intricate structural variability induced by repeat-mediated recombination in the complete mitochondrial genome of Cuscuta gronovii Willd.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1