Xinyue Ma, Loïs S Miraucourt, Haoyi Qiu, Mengyi Xu, Erik P Cook, Arjun Krishnaswamy, Reza Sharif-Naeini, Anmar Khadra
{"title":"ElecFeX is a user-friendly toolbox for efficient feature extraction from single-cell electrophysiological recordings.","authors":"Xinyue Ma, Loïs S Miraucourt, Haoyi Qiu, Mengyi Xu, Erik P Cook, Arjun Krishnaswamy, Reza Sharif-Naeini, Anmar Khadra","doi":"10.1016/j.crmeth.2024.100791","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing neurons by their electrophysiological phenotypes is essential for understanding the neural basis of behavioral and cognitive functions. Technological developments have enabled the collection of hundreds of neural recordings; this calls for new tools capable of performing feature extraction efficiently. To address the urgent need for a powerful and accessible tool, we developed ElecFeX, an open-source MATLAB-based toolbox that (1) has an intuitive graphical user interface, (2) provides customizable measurements for a wide range of electrophysiological features, (3) processes large-size datasets effortlessly via batch analysis, and (4) yields formatted output for further analysis. We implemented ElecFeX on a diverse set of neural recordings; demonstrated its functionality, versatility, and efficiency in capturing electrical features; and established its significance in distinguishing neuronal subgroups across brain regions and species. ElecFeX is thus presented as a user-friendly toolbox to benefit the neuroscience community by minimizing the time required for extracting features from their electrophysiological datasets.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100791"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228277/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Characterizing neurons by their electrophysiological phenotypes is essential for understanding the neural basis of behavioral and cognitive functions. Technological developments have enabled the collection of hundreds of neural recordings; this calls for new tools capable of performing feature extraction efficiently. To address the urgent need for a powerful and accessible tool, we developed ElecFeX, an open-source MATLAB-based toolbox that (1) has an intuitive graphical user interface, (2) provides customizable measurements for a wide range of electrophysiological features, (3) processes large-size datasets effortlessly via batch analysis, and (4) yields formatted output for further analysis. We implemented ElecFeX on a diverse set of neural recordings; demonstrated its functionality, versatility, and efficiency in capturing electrical features; and established its significance in distinguishing neuronal subgroups across brain regions and species. ElecFeX is thus presented as a user-friendly toolbox to benefit the neuroscience community by minimizing the time required for extracting features from their electrophysiological datasets.