{"title":"Assessment of silver nanoparticles' antitumor effects: Insights into cell number, viability, and morphology of glioblastoma and prostate cancer cells","authors":"Isabel Cristina Gomes Santos, Michelle Lopes de Oliveira, Renata Carvalho Silva, Celso Sant'Anna","doi":"10.1016/j.tiv.2024.105869","DOIUrl":null,"url":null,"abstract":"<div><p>Silver nanoparticles (AgNPs) hold promise for cancer therapy. This study aimed to evaluate their impact on tumor and non-tumor cell number, viability, and morphology. Antitumor activity was tested on U-87MG (glioblastoma) and DU-145 (prostate cancer) cell lines. Treatment with AgNPs notably reached a reduction of U-87MG and DU-145 cell growth by 89.30% and 79.74%, respectively, resulting in slower growth rates. AgNPs induced DNA damage, evidenced by reduced nuclear area and DNA content via fluorescent image-based analyses. Conversely, HFF-1 non-tumor cells displayed no significant changes post-AgNPs exposure. Viability assays revealed substantial reductions in U-87MG and DU-145 cells (79% and 63% in MTT assays, 30% and 52.2% in high-content analyses), while HFF-1 cells exhibited lower sensitivity. Tumor cells had notably lower IC<sub>50</sub> values than non-tumor cells, indicating selective susceptibility. Transmission electron microscopy (TEM) showed morphological changes post-AgNPs administration, including increased vacuoles, myelin figures, membrane ghosts, cellular extravasation, and membrane projections. The findings suggest the potential of AgNPs against glioblastoma and prostate cancer, necessitating further exploration across other cancer cell lines.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105869"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324000997","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silver nanoparticles (AgNPs) hold promise for cancer therapy. This study aimed to evaluate their impact on tumor and non-tumor cell number, viability, and morphology. Antitumor activity was tested on U-87MG (glioblastoma) and DU-145 (prostate cancer) cell lines. Treatment with AgNPs notably reached a reduction of U-87MG and DU-145 cell growth by 89.30% and 79.74%, respectively, resulting in slower growth rates. AgNPs induced DNA damage, evidenced by reduced nuclear area and DNA content via fluorescent image-based analyses. Conversely, HFF-1 non-tumor cells displayed no significant changes post-AgNPs exposure. Viability assays revealed substantial reductions in U-87MG and DU-145 cells (79% and 63% in MTT assays, 30% and 52.2% in high-content analyses), while HFF-1 cells exhibited lower sensitivity. Tumor cells had notably lower IC50 values than non-tumor cells, indicating selective susceptibility. Transmission electron microscopy (TEM) showed morphological changes post-AgNPs administration, including increased vacuoles, myelin figures, membrane ghosts, cellular extravasation, and membrane projections. The findings suggest the potential of AgNPs against glioblastoma and prostate cancer, necessitating further exploration across other cancer cell lines.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.