{"title":"Scalable design of orthogonal DNA barcode libraries","authors":"Gokul Gowri, Kuanwei Sheng, Peng Yin","doi":"10.1038/s43588-024-00646-z","DOIUrl":null,"url":null,"abstract":"Orthogonal DNA barcode library design is an essential task in bioengineering. Here we present seqwalk, an efficient method for designing barcode libraries that satisfy a sequence symmetry minimization (SSM) heuristic for orthogonality, with theoretical guarantees of maximal or near-maximal library size under certain design constraints. Seqwalk encodes SSM constraints in a de Bruijn graph representation of sequence space, enabling the application of recent advances in discrete mathematics1 to the problem of orthogonal sequence design. We demonstrate the scalability of seqwalk by designing a library of >106 SSM-satisfying barcode sequences in less than 20 s on a standard laptop. Seqwalk is a scalable method for designing orthogonal DNA barcode libraries, producing one million barcodes in 20 s on a standard laptop.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208133/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00646-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Orthogonal DNA barcode library design is an essential task in bioengineering. Here we present seqwalk, an efficient method for designing barcode libraries that satisfy a sequence symmetry minimization (SSM) heuristic for orthogonality, with theoretical guarantees of maximal or near-maximal library size under certain design constraints. Seqwalk encodes SSM constraints in a de Bruijn graph representation of sequence space, enabling the application of recent advances in discrete mathematics1 to the problem of orthogonal sequence design. We demonstrate the scalability of seqwalk by designing a library of >106 SSM-satisfying barcode sequences in less than 20 s on a standard laptop. Seqwalk is a scalable method for designing orthogonal DNA barcode libraries, producing one million barcodes in 20 s on a standard laptop.