{"title":"Adaptive directional estimator of the density in Rd for independent and mixing sequences","authors":"Sinda Ammous , Jérôme Dedecker , Céline Duval","doi":"10.1016/j.jmva.2024.105332","DOIUrl":null,"url":null,"abstract":"<div><p>A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, <span><math><mi>α</mi></math></span>-mixing and <span><math><mi>τ</mi></math></span>-mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the <em>best</em> Sobolev regularity of the density of <span><math><mrow><mi>A</mi><mi>X</mi></mrow></math></span>, where <span><math><mi>A</mi></math></span> belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000393","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, -mixing and -mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the best Sobolev regularity of the density of , where belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.