Muhammad Mubashir , Mubashar Ali , Zunaira Bibi , Usama Afzal , Munirah D. Albaqami , Saikh Mohammad , Muhammad Muzamil
{"title":"Computational evaluation of novel XCuH3 (X = Li, Na and K) perovskite-type hydrides for hydrogen storage applications using LDA and GGA approach","authors":"Muhammad Mubashir , Mubashar Ali , Zunaira Bibi , Usama Afzal , Munirah D. Albaqami , Saikh Mohammad , Muhammad Muzamil","doi":"10.1016/j.jmgm.2024.108808","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen energy has attracted a lot of interest from researchers as a sustainable and renewable energy source, but there are some technical challenges related to its storage. Hydride materials demonstrate the ability to store hydrogen adequately and safely. In the current study, we have investigated the structural and optoelectronic properties of the XCuH<sub>3</sub> (where X = Li, Na and K) perovskite-type hydride using LDA and GGA formalisms for hydrogen storage application. Electronic properties such as band structure, density of states reveal the metallic character of the studied XCuH<sub>3</sub> hydrides. Various optical parameters such as the complex dielectric function, refractive index, extinction coefficient, absorption coefficient, reflectivity, optical conductivity, energy loss function, and joint density of states have been computed and compared. The gravimetric hydrogen storage capacity for LiCuH<sub>3</sub>, NaCuH<sub>3</sub> and KCuH<sub>3</sub> are found to be 4.11, 3.37 and 2.86 wt%, respectively. The computed values of the gravimetric ratio manifest that XCuH<sub>3</sub> hydrides are potential candidates for hydrogen storage applications. These calculations are made for the first time for XCuH<sub>3</sub> hydrides and will be inspirational in the future for comparison and for hydrogen storage purposes.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"131 ","pages":"Article 108808"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001086","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen energy has attracted a lot of interest from researchers as a sustainable and renewable energy source, but there are some technical challenges related to its storage. Hydride materials demonstrate the ability to store hydrogen adequately and safely. In the current study, we have investigated the structural and optoelectronic properties of the XCuH3 (where X = Li, Na and K) perovskite-type hydride using LDA and GGA formalisms for hydrogen storage application. Electronic properties such as band structure, density of states reveal the metallic character of the studied XCuH3 hydrides. Various optical parameters such as the complex dielectric function, refractive index, extinction coefficient, absorption coefficient, reflectivity, optical conductivity, energy loss function, and joint density of states have been computed and compared. The gravimetric hydrogen storage capacity for LiCuH3, NaCuH3 and KCuH3 are found to be 4.11, 3.37 and 2.86 wt%, respectively. The computed values of the gravimetric ratio manifest that XCuH3 hydrides are potential candidates for hydrogen storage applications. These calculations are made for the first time for XCuH3 hydrides and will be inspirational in the future for comparison and for hydrogen storage purposes.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.