Prokaryotic diversity in the sponges Mycale (Oxymycale) acerata (Kirkpatrick, 1907) and Dendrilla antarctica (Topsent, 1905) from two distant Antarctic marine areas: South Cove at Rothera Point (Adelaide Island, Western Antarctic Peninsula) and Thetys Bay (Terra Nova Bay, Ross Sea)
Angelina Lo Giudice , Maria Papale , Maurizio Azzaro , Carmen Rizzo
{"title":"Prokaryotic diversity in the sponges Mycale (Oxymycale) acerata (Kirkpatrick, 1907) and Dendrilla antarctica (Topsent, 1905) from two distant Antarctic marine areas: South Cove at Rothera Point (Adelaide Island, Western Antarctic Peninsula) and Thetys Bay (Terra Nova Bay, Ross Sea)","authors":"Angelina Lo Giudice , Maria Papale , Maurizio Azzaro , Carmen Rizzo","doi":"10.1016/j.dsr2.2024.105391","DOIUrl":null,"url":null,"abstract":"<div><p>The Antarctic environment offers a unique opportunity to study the interactions between Porifera and their microbial symbionts. Reports on the association between prokaryotes and Antarctic sponges are increasing. However, a comparison of the bacterial communities associated to the same sponge species but inhabiting different Antarctic areas has seldom been addressed. This study explored the prokaryotes associated with the sponge species <em>Mycale</em> (<em>Oxymycale</em>) <em>acerata</em> (Kirkpatrick, 1907) and <em>Dendrilla antarctica</em> (Topsent, 1905) collected from South Cove at Rothera Point (Antarctic Peninsula) and Thetys Bay (Ross Sea). In <em>D. antarctica</em>, some groups were equally represented at both sites (e.g., <em>Amylibacter</em>, <em>Cutibacterium</em>, <em>Yoonia-Loktanella</em>), whereas members in the genera <em>Polaribacter</em> and <em>Kistimonas</em> were more abundant in Rothera. Similarly, <em>M. acerata</em> individuals collected from Rothera showed a higher relative abundance of some bacterial genera, such as <em>Polaribacter</em>, <em>Sulfitobacter</em>, and <em>Ulvibacter</em>. The results allowed us to identify some taxa common to sponges belonging to the same species and highlighted the possible influence of site-specific environmental conditions in shaping symbionts.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"216 ","pages":"Article 105391"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064524000353","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The Antarctic environment offers a unique opportunity to study the interactions between Porifera and their microbial symbionts. Reports on the association between prokaryotes and Antarctic sponges are increasing. However, a comparison of the bacterial communities associated to the same sponge species but inhabiting different Antarctic areas has seldom been addressed. This study explored the prokaryotes associated with the sponge species Mycale (Oxymycale) acerata (Kirkpatrick, 1907) and Dendrilla antarctica (Topsent, 1905) collected from South Cove at Rothera Point (Antarctic Peninsula) and Thetys Bay (Ross Sea). In D. antarctica, some groups were equally represented at both sites (e.g., Amylibacter, Cutibacterium, Yoonia-Loktanella), whereas members in the genera Polaribacter and Kistimonas were more abundant in Rothera. Similarly, M. acerata individuals collected from Rothera showed a higher relative abundance of some bacterial genera, such as Polaribacter, Sulfitobacter, and Ulvibacter. The results allowed us to identify some taxa common to sponges belonging to the same species and highlighted the possible influence of site-specific environmental conditions in shaping symbionts.
期刊介绍:
Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.