{"title":"DRACO: Distributed Resource-aware Admission Control for large-scale, multi-tier systems","authors":"Domenico Cotroneo, Roberto Natella, Stefano Rosiello","doi":"10.1016/j.jpdc.2024.104935","DOIUrl":null,"url":null,"abstract":"<div><p>Modern distributed systems are designed to manage overload conditions, by throttling the traffic in excess that cannot be served through <em>overload control</em> techniques. However, the adoption of large-scale NoSQL datastores make systems vulnerable to <em>unbalanced overloads</em>, where specific datastore nodes are overloaded because of hot-spot resources and hogs. In this paper, we propose DRACO, a novel overload control solution that is aware of data dependencies between the application and the datastore tiers. DRACO performs selective admission control of application requests, by only dropping the ones that map to resources on overloaded datastore nodes, while achieving high resource utilization on non-overloaded datastore nodes. We evaluate DRACO on two case studies with high availability and performance requirements, a virtualized IP Multimedia Subsystem and a distributed fileserver. Results show that the solution can achieve high performance and resource utilization even under extreme overload conditions, up to 100x the engineered capacity.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"192 ","pages":"Article 104935"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0743731524000996/pdfft?md5=47aadc5c325c36c8ff181fd763795f30&pid=1-s2.0-S0743731524000996-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000996","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern distributed systems are designed to manage overload conditions, by throttling the traffic in excess that cannot be served through overload control techniques. However, the adoption of large-scale NoSQL datastores make systems vulnerable to unbalanced overloads, where specific datastore nodes are overloaded because of hot-spot resources and hogs. In this paper, we propose DRACO, a novel overload control solution that is aware of data dependencies between the application and the datastore tiers. DRACO performs selective admission control of application requests, by only dropping the ones that map to resources on overloaded datastore nodes, while achieving high resource utilization on non-overloaded datastore nodes. We evaluate DRACO on two case studies with high availability and performance requirements, a virtualized IP Multimedia Subsystem and a distributed fileserver. Results show that the solution can achieve high performance and resource utilization even under extreme overload conditions, up to 100x the engineered capacity.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.