Guiqiang Zhang, Ning Wang, Yuan Ma, Shumei Zhai, To Ngai, Shilei Ni, Xinyi Jiang, Jianwei Jiao, Jiwei Cui
{"title":"Metal coordination-driven assembly of stimulator of interferon genes-activating nanoparticles for tumor chemo-immunotherapy (2/2024)","authors":"Guiqiang Zhang, Ning Wang, Yuan Ma, Shumei Zhai, To Ngai, Shilei Ni, Xinyi Jiang, Jianwei Jiao, Jiwei Cui","doi":"10.1002/bmm2.12106","DOIUrl":null,"url":null,"abstract":"<p>In this article number 10.1002/bmm2.12077, Guiqiang Zhang, Ning Wang and their co-workers developed stimulator of interferon genes (STING)-activating nanoparticles via metal coordination-driven assembly of a synthetic STING agonist and a phenolic chemotherapeutic drug. These nanoparticles could efficiently accumulate in tumors, leading to potent STING pathway activation, induction of immunogenic cell death, and regulation of amino acid metabolism. The antitumor immunity induced by nanoparticles could significantly inhibit the growth of primary, recurrent, and metastatic tumors, providing a novel paradigm for tumor chemo-immunotherapy.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article number 10.1002/bmm2.12077, Guiqiang Zhang, Ning Wang and their co-workers developed stimulator of interferon genes (STING)-activating nanoparticles via metal coordination-driven assembly of a synthetic STING agonist and a phenolic chemotherapeutic drug. These nanoparticles could efficiently accumulate in tumors, leading to potent STING pathway activation, induction of immunogenic cell death, and regulation of amino acid metabolism. The antitumor immunity induced by nanoparticles could significantly inhibit the growth of primary, recurrent, and metastatic tumors, providing a novel paradigm for tumor chemo-immunotherapy.