The necroptosis cell death pathway drives neurodegeneration in Alzheimer’s disease

IF 9.3 1区 医学 Q1 CLINICAL NEUROLOGY Acta Neuropathologica Pub Date : 2024-06-09 DOI:10.1007/s00401-024-02747-5
Sriram Balusu, Bart De Strooper
{"title":"The necroptosis cell death pathway drives neurodegeneration in Alzheimer’s disease","authors":"Sriram Balusu,&nbsp;Bart De Strooper","doi":"10.1007/s00401-024-02747-5","DOIUrl":null,"url":null,"abstract":"<div><p>Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"147 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-024-02747-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
坏死细胞死亡途径驱动阿尔茨海默病的神经变性。
虽然凋亡、热凋亡和铁凋亡都与 AD 有关,但它们都不能完全解释在 AD 大脑中观察到的大量神经元丢失。最近的证据表明,坏死在AD中大量存在,坏死与Tau病理学的出现密切相关,而且坏死标记物在颗粒细胞神经变性囊泡中积聚。我们在此回顾了粒细胞介导的神经元-坏死通路的神经元特异性激活、该通路上游的潜在AD相关诱因、坏死体与内溶酶体通路的相互作用,这些可能与Tau病理学有关。此外,我们还强调了抑制坏死蛋白沉积对神经退行性疾病(如阿氏痴呆症)的治疗潜力,因为这为针对神经元缺失以保护认知能力的药物开发提供了一条新途径。当这种方法与降低淀粉样蛋白的药物相结合时,似乎尤为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Neuropathologica
Acta Neuropathologica 医学-病理学
CiteScore
23.70
自引率
3.90%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.
期刊最新文献
Functional profiling of murine glioma models highlights targetable immune evasion phenotypes Lipid storage myopathy associated with sertraline treatment is an acquired mitochondrial disorder with respiratory chain deficiency BAG3’s dual roles in Parkinson’s disease and cardiomyopathy: benefit or liability? SMOC1 colocalizes with Alzheimer’s disease neuropathology and delays Aβ aggregation Pathologic and clinical correlates of region-specific brain GFAP in Alzheimer’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1