Self-supervised learning for classifying paranasal anomalies in the maxillary sinus.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal of Computer Assisted Radiology and Surgery Pub Date : 2024-09-01 Epub Date: 2024-06-08 DOI:10.1007/s11548-024-03172-5
Debayan Bhattacharya, Finn Behrendt, Benjamin Tobias Becker, Lennart Maack, Dirk Beyersdorff, Elina Petersen, Marvin Petersen, Bastian Cheng, Dennis Eggert, Christian Betz, Anna Sophie Hoffmann, Alexander Schlaefer
{"title":"Self-supervised learning for classifying paranasal anomalies in the maxillary sinus.","authors":"Debayan Bhattacharya, Finn Behrendt, Benjamin Tobias Becker, Lennart Maack, Dirk Beyersdorff, Elina Petersen, Marvin Petersen, Bastian Cheng, Dennis Eggert, Christian Betz, Anna Sophie Hoffmann, Alexander Schlaefer","doi":"10.1007/s11548-024-03172-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Paranasal anomalies, frequently identified in routine radiological screenings, exhibit diverse morphological characteristics. Due to the diversity of anomalies, supervised learning methods require large labelled dataset exhibiting diverse anomaly morphology. Self-supervised learning (SSL) can be used to learn representations from unlabelled data. However, there are no SSL methods designed for the downstream task of classifying paranasal anomalies in the maxillary sinus (MS).</p><p><strong>Methods: </strong>Our approach uses a 3D convolutional autoencoder (CAE) trained in an unsupervised anomaly detection (UAD) framework. Initially, we train the 3D CAE to reduce reconstruction errors when reconstructing normal maxillary sinus (MS) image. Then, this CAE is applied to an unlabelled dataset to generate coarse anomaly locations by creating residual MS images. Following this, a 3D convolutional neural network (CNN) reconstructs these residual images, which forms our SSL task. Lastly, we fine-tune the encoder part of the 3D CNN on a labelled dataset of normal and anomalous MS images.</p><p><strong>Results: </strong>The proposed SSL technique exhibits superior performance compared to existing generic self-supervised methods, especially in scenarios with limited annotated data. When trained on just 10% of the annotated dataset, our method achieves an area under the precision-recall curve (AUPRC) of 0.79 for the downstream classification task. This performance surpasses other methods, with BYOL attaining an AUPRC of 0.75, SimSiam at 0.74, SimCLR at 0.73 and masked autoencoding using SparK at 0.75.</p><p><strong>Conclusion: </strong>A self-supervised learning approach that inherently focuses on localizing paranasal anomalies proves to be advantageous, particularly when the subsequent task involves differentiating normal from anomalous maxillary sinuses. Access our code at https://github.com/mtec-tuhh/self-supervised-paranasal-anomaly .</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"1713-1721"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03172-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Paranasal anomalies, frequently identified in routine radiological screenings, exhibit diverse morphological characteristics. Due to the diversity of anomalies, supervised learning methods require large labelled dataset exhibiting diverse anomaly morphology. Self-supervised learning (SSL) can be used to learn representations from unlabelled data. However, there are no SSL methods designed for the downstream task of classifying paranasal anomalies in the maxillary sinus (MS).

Methods: Our approach uses a 3D convolutional autoencoder (CAE) trained in an unsupervised anomaly detection (UAD) framework. Initially, we train the 3D CAE to reduce reconstruction errors when reconstructing normal maxillary sinus (MS) image. Then, this CAE is applied to an unlabelled dataset to generate coarse anomaly locations by creating residual MS images. Following this, a 3D convolutional neural network (CNN) reconstructs these residual images, which forms our SSL task. Lastly, we fine-tune the encoder part of the 3D CNN on a labelled dataset of normal and anomalous MS images.

Results: The proposed SSL technique exhibits superior performance compared to existing generic self-supervised methods, especially in scenarios with limited annotated data. When trained on just 10% of the annotated dataset, our method achieves an area under the precision-recall curve (AUPRC) of 0.79 for the downstream classification task. This performance surpasses other methods, with BYOL attaining an AUPRC of 0.75, SimSiam at 0.74, SimCLR at 0.73 and masked autoencoding using SparK at 0.75.

Conclusion: A self-supervised learning approach that inherently focuses on localizing paranasal anomalies proves to be advantageous, particularly when the subsequent task involves differentiating normal from anomalous maxillary sinuses. Access our code at https://github.com/mtec-tuhh/self-supervised-paranasal-anomaly .

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于上颌窦旁异常分类的自我监督学习。
目的:在常规放射筛查中经常发现的副鼻孔异常表现出多种形态特征。由于异常的多样性,监督学习方法需要大量的标注数据集来展示不同的异常形态。自监督学习(SSL)可用于从无标签数据中学习表征。然而,目前还没有针对上颌窦(MS)副鼻腔异常分类这一下游任务而设计的自我监督学习方法:我们的方法使用在无监督异常检测(UAD)框架下训练的三维卷积自动编码器(CAE)。首先,我们训练三维卷积自动编码器,以减少重建正常上颌窦(MS)图像时的重建误差。然后,将该 CAE 应用于无标签数据集,通过创建残余 MS 图像来生成粗略的异常位置。然后,三维卷积神经网络(CNN)重建这些残留图像,这就是我们的 SSL 任务。最后,我们在一个标有正常和异常 MS 图像的数据集上对三维卷积神经网络的编码器部分进行微调:结果:与现有的通用自监督方法相比,所提出的 SSL 技术表现出更优越的性能,尤其是在标注数据有限的情况下。当仅在 10%的注释数据集上进行训练时,我们的方法在下游分类任务中的精度-召回曲线下面积(AUPRC)达到了 0.79。这一性能超过了其他方法,其中 BYOL 的 AUPRC 为 0.75,SimSiam 为 0.74,SimCLR 为 0.73,使用 SparK 的屏蔽自动编码为 0.75:事实证明,以定位副鼻窦异常为固有重点的自我监督学习方法具有优势,尤其是当后续任务涉及区分正常和异常上颌窦时。访问我们的代码:https://github.com/mtec-tuhh/self-supervised-paranasal-anomaly 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
期刊最新文献
Non-rigid scene reconstruction of deformable soft tissue with monocular endoscopy in minimally invasive surgery. Evaluation of augmented reality training for a navigation device used for CT-guided needle placement. Noctopus: a novel device and method for patient registration and navigation in image-guided cranial surgery. Assessment of intracranial aneurysm neck deformation after contour deployment. TraumaFlow-development of a workflow-based clinical decision support system for the management of severe trauma cases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1