The Mutual Regulatory Role of Ferroptosis and Immunotherapy in Anti-tumor Therapy

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Apoptosis Pub Date : 2024-06-09 DOI:10.1007/s10495-024-01988-9
Zhiguo Mao, Yilong Hu, Yinan Zhao, Xiaolei Zhang, Lin Guo, Xiaoran Wang, Jinying Zhang, Mingsan Miao
{"title":"The Mutual Regulatory Role of Ferroptosis and Immunotherapy in Anti-tumor Therapy","authors":"Zhiguo Mao,&nbsp;Yilong Hu,&nbsp;Yinan Zhao,&nbsp;Xiaolei Zhang,&nbsp;Lin Guo,&nbsp;Xiaoran Wang,&nbsp;Jinying Zhang,&nbsp;Mingsan Miao","doi":"10.1007/s10495-024-01988-9","DOIUrl":null,"url":null,"abstract":"<div><p>Ferroptosis is a form of cell death that is triggered by the presence of ferrous ions and is characterized by lipid peroxidation induced by these ions. The mechanism exhibits distinct morphological characteristics compared to apoptosis, autophagy, and necrosis. A notable aspect of ferroptosis is its ability to inhibit uncontrolled tumor replication and immortalization, especially in malignant, drug-resistant, and metastatic tumors. Additionally, immunotherapy, a novel therapeutic approach for tumors, has been found to have a reciprocal regulatory relationship with ferroptosis in the context of anti-tumor therapy. A comprehensive analysis of ferroptosis and immunotherapy in tumor therapy is presented in this paper, highlighting the potential for mutual adjuvant effects. Specifically, we discuss the mechanisms underlying ferroptosis and immunotherapy, emphasizing their ability to improve the tumor immune microenvironment and enhance immunotherapeutic effects. Furthermore, we investigate how immunotherapeutic factors may increase the sensitivity of tumor cells to ferroptosis. We aim to provide a prospective view of the promising value of combined ferroptosis and immunotherapy in anticancer therapy by elucidating the mutual regulatory network between each.</p><h3>Graphical Abstract</h3><p>Ferroptosis in the tumor microenvironment involves intricate crosstalk between tumor cells and immune cells. Through MHC recognition, CD8<sup>+</sup>T cells activate the JAK1/STAT1 pathway in tumor cells, impairing the function of System Xc and reducing GSH and GPX4 expression to promote tumor cell ferroptosis. Additionally, activation of the STAT1-IRF1-ACSL4 pathway could also promote ferroptosis. The blockade of the antioxidant pathway in tumor cells induces ferroptosis, and the released DAMPs could promote DCs maturation through the cGAMP-STING-TBK1 pathway, leading to antigen presentation that activates CD8<sup>+</sup>T cells. The release of DAMPs also induces the M1-type polarization of macrophages, which exerts an anti-tumor effect. The anti-tumor effects of CD8<sup>+</sup>T cells could also be enhanced by blocking inhibitory immune checkpoints such as PD-1, PD-L1, CTLA4, and LAG3. Abbreviations: ACSL4, acyl-CoA synthetase long-chain family member 4; BH4, tetrahydrobiopterin; cGAMP, cyclic GMP-AMP; CTLA4, cytotoxic T lymphocyte-associated antigen-4; DCs, dendritic cells; DHFR, dihydrofolate reductase; DHODH, dihydroorotate dehydrogenase; GPX4, glutathione peroxidase 4; GSH, glutathione; HIF-1α, Hypoxia-Inducible Factor-1α;IFN-γ, interferon-γ; IRF1, interferon regulatory factor 1;IRP1, iron regulatory protein 1; JAK 1, janus kinase; LAG3, lymphocyte activation gene 3; MHC, major histocompatibility complex; NRF2, nuclear factor erythroid-2-related factor 2; PD-1, programmed death protein -1; PD-L1, programmed death ligand 1; PUFA, polyunsaturated fatty acid; ROS, reative oxygen species; STAT1, signal transducer and activator of transcription 1; STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1 TLR2, toll-like receptor 2. This diagram was drawn by Figdraw (www.figdraw.com).</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":"29 9-10","pages":"1291 - 1308"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10495-024-01988-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis is a form of cell death that is triggered by the presence of ferrous ions and is characterized by lipid peroxidation induced by these ions. The mechanism exhibits distinct morphological characteristics compared to apoptosis, autophagy, and necrosis. A notable aspect of ferroptosis is its ability to inhibit uncontrolled tumor replication and immortalization, especially in malignant, drug-resistant, and metastatic tumors. Additionally, immunotherapy, a novel therapeutic approach for tumors, has been found to have a reciprocal regulatory relationship with ferroptosis in the context of anti-tumor therapy. A comprehensive analysis of ferroptosis and immunotherapy in tumor therapy is presented in this paper, highlighting the potential for mutual adjuvant effects. Specifically, we discuss the mechanisms underlying ferroptosis and immunotherapy, emphasizing their ability to improve the tumor immune microenvironment and enhance immunotherapeutic effects. Furthermore, we investigate how immunotherapeutic factors may increase the sensitivity of tumor cells to ferroptosis. We aim to provide a prospective view of the promising value of combined ferroptosis and immunotherapy in anticancer therapy by elucidating the mutual regulatory network between each.

Graphical Abstract

Ferroptosis in the tumor microenvironment involves intricate crosstalk between tumor cells and immune cells. Through MHC recognition, CD8+T cells activate the JAK1/STAT1 pathway in tumor cells, impairing the function of System Xc and reducing GSH and GPX4 expression to promote tumor cell ferroptosis. Additionally, activation of the STAT1-IRF1-ACSL4 pathway could also promote ferroptosis. The blockade of the antioxidant pathway in tumor cells induces ferroptosis, and the released DAMPs could promote DCs maturation through the cGAMP-STING-TBK1 pathway, leading to antigen presentation that activates CD8+T cells. The release of DAMPs also induces the M1-type polarization of macrophages, which exerts an anti-tumor effect. The anti-tumor effects of CD8+T cells could also be enhanced by blocking inhibitory immune checkpoints such as PD-1, PD-L1, CTLA4, and LAG3. Abbreviations: ACSL4, acyl-CoA synthetase long-chain family member 4; BH4, tetrahydrobiopterin; cGAMP, cyclic GMP-AMP; CTLA4, cytotoxic T lymphocyte-associated antigen-4; DCs, dendritic cells; DHFR, dihydrofolate reductase; DHODH, dihydroorotate dehydrogenase; GPX4, glutathione peroxidase 4; GSH, glutathione; HIF-1α, Hypoxia-Inducible Factor-1α;IFN-γ, interferon-γ; IRF1, interferon regulatory factor 1;IRP1, iron regulatory protein 1; JAK 1, janus kinase; LAG3, lymphocyte activation gene 3; MHC, major histocompatibility complex; NRF2, nuclear factor erythroid-2-related factor 2; PD-1, programmed death protein -1; PD-L1, programmed death ligand 1; PUFA, polyunsaturated fatty acid; ROS, reative oxygen species; STAT1, signal transducer and activator of transcription 1; STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1 TLR2, toll-like receptor 2. This diagram was drawn by Figdraw (www.figdraw.com).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁蛋白沉积和免疫疗法在抗肿瘤治疗中的相互调节作用
铁凋亡是一种由亚铁离子存在引发的细胞死亡形式,其特点是这些离子诱发脂质过氧化。与细胞凋亡、自噬和坏死相比,该机制表现出独特的形态学特征。铁凋亡的一个显著特点是能够抑制不受控制的肿瘤复制和永生化,尤其是在恶性、耐药和转移性肿瘤中。此外,免疫疗法作为一种新型的肿瘤治疗方法,已被发现在抗肿瘤治疗中与铁凋亡存在相互调节的关系。本文全面分析了肿瘤治疗中的铁蛋白沉积和免疫疗法,强调了两者相互辅助作用的潜力。具体来说,我们讨论了铁蛋白沉积和免疫疗法的内在机制,强调了它们改善肿瘤免疫微环境和增强免疫治疗效果的能力。此外,我们还研究了免疫治疗因素如何增加肿瘤细胞对铁蛋白沉积的敏感性。我们旨在通过阐明铁氧体渗透和免疫疗法之间的相互调控网络,前瞻性地看待它们在抗癌治疗中的重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Apoptosis
Apoptosis 生物-生化与分子生物学
CiteScore
9.10
自引率
4.20%
发文量
85
审稿时长
1 months
期刊介绍: Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.
期刊最新文献
Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy. sVEGFR3 alleviates myocardial ischemia/reperfusion injury through regulating mitochondrial homeostasis and immune cell infiltration. Combined effects of natural products and exercise on apoptosis pathways in obesity-related skeletal muscle dysfunction. Emerging role of PANoptosis in kidney diseases: molecular mechanisms and therapeutic opportunities. Exosomes derived from FN14-overexpressing BMSCs activate the NF-κB signaling pathway to induce PANoptosis in osteosarcoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1