Nevo Itzhak , Szymon Jaroszewicz , Robert Moskovitch
{"title":"Event prediction by estimating continuously the completion of a single temporal pattern’s instances","authors":"Nevo Itzhak , Szymon Jaroszewicz , Robert Moskovitch","doi":"10.1016/j.jbi.2024.104665","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><p>Develop a new method for continuous prediction that utilizes a single temporal pattern ending with an event of interest and its multiple instances detected in the temporal data.</p></div><div><h3>Methods:</h3><p>Use temporal abstraction to transform time series, instantaneous events, and time intervals into a uniform representation using symbolic time intervals (STIs). Introduce a new approach to event prediction using a single time intervals-related pattern (TIRP), which can learn models to predict whether and when an event of interest will occur, based on multiple instances of a pattern that end with the event.</p></div><div><h3>Results:</h3><p>The proposed methods achieved an average improvement of 5% AUROC over LSTM-FCN, the best-performed baseline model, out of the evaluated baseline models (RawXGB, Resnet, LSTM-FCN, and ROCKET) that were applied to real-life datasets.</p></div><div><h3>Conclusion:</h3><p>The proposed methods for predicting events continuously have the potential to be used in a wide range of real-world and real-time applications in diverse domains with heterogeneous multivariate temporal data. For example, it could be used to predict panic attacks early using wearable devices or to predict complications early in intensive care unit patients.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"156 ","pages":"Article 104665"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424000832","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
Develop a new method for continuous prediction that utilizes a single temporal pattern ending with an event of interest and its multiple instances detected in the temporal data.
Methods:
Use temporal abstraction to transform time series, instantaneous events, and time intervals into a uniform representation using symbolic time intervals (STIs). Introduce a new approach to event prediction using a single time intervals-related pattern (TIRP), which can learn models to predict whether and when an event of interest will occur, based on multiple instances of a pattern that end with the event.
Results:
The proposed methods achieved an average improvement of 5% AUROC over LSTM-FCN, the best-performed baseline model, out of the evaluated baseline models (RawXGB, Resnet, LSTM-FCN, and ROCKET) that were applied to real-life datasets.
Conclusion:
The proposed methods for predicting events continuously have the potential to be used in a wide range of real-world and real-time applications in diverse domains with heterogeneous multivariate temporal data. For example, it could be used to predict panic attacks early using wearable devices or to predict complications early in intensive care unit patients.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.