Fatigue in Parkinson's Disease Is Due to Decreased Efficiency of the Frontal Network: Quantitative EEG Analysis.

IF 2.5 4区 医学 Q2 CLINICAL NEUROLOGY Journal of Movement Disorders Pub Date : 2024-07-01 Epub Date: 2024-06-10 DOI:10.14802/jmd.24038
Min Seung Kim, Sanguk Park, Ukeob Park, Seung Wan Kang, Suk Yun Kang
{"title":"Fatigue in Parkinson's Disease Is Due to Decreased Efficiency of the Frontal Network: Quantitative EEG Analysis.","authors":"Min Seung Kim, Sanguk Park, Ukeob Park, Seung Wan Kang, Suk Yun Kang","doi":"10.14802/jmd.24038","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Fatigue is a common, debilitating nonmotor symptom of Parkinson's disease (PD), but its mechanism is poorly understood. We aimed to determine whether electroencephalography (EEG) could objectively measure fatigue and to explore the pathophysiology of fatigue in PD.</p><p><strong>Methods: </strong>We studied 32 de novo PD patients who underwent EEG. We compared brain activity between 19 PD patients without fatigue and 13 PD patients with fatigue via EEG power spectra and graphs, including the global efficiency, characteristic path length, clustering coefficient, small-worldness, local efficiency, degree centrality, closeness centrality, and betweenness centrality.</p><p><strong>Results: </strong>No significant differences in absolute or relative power were detected between PD patients without or with fatigue (all p > 0.02, Bonferroni-corrected). According to our network analysis, brain network efficiency differed by frequency band. Generally, the brain network in the frontal area for theta and delta bands showed greater efficiency, and in the temporal area, the alpha1 band was less efficient in PD patients without fatigue (p < 0.0001, p = 0.0011, and p = 0.0007, respectively, Bonferroni-corrected).</p><p><strong>Conclusion: </strong>Our study suggests that PD patients with fatigue have less efficient networks in the frontal area than PD patients without fatigue. These findings may explain why fatigue is common in PD, a frontostriatal disorder. Increased efficiency in the temporal area in PD patients with fatigue is assumed to be compensatory. Brain network analysis using graph theory is more valuable than power spectrum analysis in revealing the brain mechanism related to fatigue.</p>","PeriodicalId":16372,"journal":{"name":"Journal of Movement Disorders","volume":" ","pages":"304-312"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Movement Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14802/jmd.24038","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Fatigue is a common, debilitating nonmotor symptom of Parkinson's disease (PD), but its mechanism is poorly understood. We aimed to determine whether electroencephalography (EEG) could objectively measure fatigue and to explore the pathophysiology of fatigue in PD.

Methods: We studied 32 de novo PD patients who underwent EEG. We compared brain activity between 19 PD patients without fatigue and 13 PD patients with fatigue via EEG power spectra and graphs, including the global efficiency, characteristic path length, clustering coefficient, small-worldness, local efficiency, degree centrality, closeness centrality, and betweenness centrality.

Results: No significant differences in absolute or relative power were detected between PD patients without or with fatigue (all p > 0.02, Bonferroni-corrected). According to our network analysis, brain network efficiency differed by frequency band. Generally, the brain network in the frontal area for theta and delta bands showed greater efficiency, and in the temporal area, the alpha1 band was less efficient in PD patients without fatigue (p < 0.0001, p = 0.0011, and p = 0.0007, respectively, Bonferroni-corrected).

Conclusion: Our study suggests that PD patients with fatigue have less efficient networks in the frontal area than PD patients without fatigue. These findings may explain why fatigue is common in PD, a frontostriatal disorder. Increased efficiency in the temporal area in PD patients with fatigue is assumed to be compensatory. Brain network analysis using graph theory is more valuable than power spectrum analysis in revealing the brain mechanism related to fatigue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
帕金森病患者的疲劳是由于额叶网络效率下降所致:脑电图定量分析。
目的:疲劳是帕金森病(PD)一种常见的、使人衰弱的非运动症状,但对其机制却知之甚少。我们旨在确定脑电图(EEG)是否能客观测量疲劳,并阐述帕金森病疲劳的病理生理学:我们对 32 名接受脑电图检查的新发型帕金森病患者进行了研究。我们通过脑电图功率谱和图形(包括全局效率(GE)、特征路径长度(CPL)、聚类系数(CCO)、小世界性(SW)、局部效率(LE)、度中心性(DC)、接近中心性(CCE)和间度中心性(BC))比较了19名无疲劳的帕金森病患者和13名有疲劳的帕金森病患者的大脑活动:无疲劳和有疲劳的帕金森病患者在绝对和相对力量上没有明显差异(所有 ps > 0.02,Bonferroni 校正)。在网络分析中,不同频段的大脑网络效率有所不同。一般来说,在额叶区,θ和δ波段的脑网络效率更高,而在颞叶区,α1波段在无疲劳的帕金森病患者中效率较低(分别为P= 0.0000,P= 0.0011,ps ≤ 0.0007,Bonferroni校正):我们的研究表明,与没有疲劳感的帕金森病患者相比,有疲劳感的帕金森病患者额叶区的网络效率较低。这些发现可能解释了为什么疲劳在前额纹状体疾病--帕金森病中很常见。疲劳型帕金森病患者颞区效率的提高被认为是一种补偿。在揭示与疲劳有关的大脑机制方面,使用图论进行大脑网络分析比功率谱分析更有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Movement Disorders
Journal of Movement Disorders CLINICAL NEUROLOGY-
CiteScore
2.50
自引率
5.10%
发文量
49
审稿时长
12 weeks
期刊最新文献
Spatiotemporal Gait Parameters During Turning and Imbalance in Parkinson's Disease: Video-Based Analysis from a Single Camera. Non-motor fluctuations in Parkinson's disease: underdiagnosed, yet important. Muscle Dystonia Manifesting as Unilateral Rectus Abdominis Hypertrophy and Abdominal Pain in Parkinson's Disease: A Case Report. Barriers to Accessing Deep Brain Stimulation for Parkinson's Disease Patients in Morocco. Complete relief of tardive truncal dystonia with a low dose of levodopa/carbidopa: A case report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1