Benjamin M Chin, Minqi Wang, Loganne T Mikkelsen, Clara T Friedman, Cherlyn J Ng, Marlena A Chu, Emily A Cooper
{"title":"A paradigm for characterizing motion misperception in people with typical vision and low vision.","authors":"Benjamin M Chin, Minqi Wang, Loganne T Mikkelsen, Clara T Friedman, Cherlyn J Ng, Marlena A Chu, Emily A Cooper","doi":"10.1097/OPX.0000000000002139","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aimed to develop a paradigm that can efficiently characterize motion percepts in people with low vision and compare their responses with well-known misperceptions made by people with typical vision when targets are hard to see.</p><p><strong>Methods: </strong>We recruited a small cohort of individuals with reduced acuity and contrast sensitivity (n = 5) as well as a comparison cohort with typical vision (n = 5) to complete a psychophysical study. Study participants were asked to judge the motion direction of a tilted rhombus that was either high or low contrast. In a series of trials, the rhombus oscillated vertically, horizontally, or diagonally. Participants indicated the perceived motion direction using a number wheel with 12 possible directions, and statistical tests were used to examine response biases.</p><p><strong>Results: </strong>All participants with typical vision showed systematic misperceptions well predicted by a Bayesian inference model. Specifically, their perception of vertical or horizontal motion was biased toward directions orthogonal to the long axis of the rhombus. They had larger biases for hard-to-see (low contrast) stimuli. Two participants with low vision had a similar bias, but with no difference between high- and low-contrast stimuli. The other participants with low vision were unbiased in their percepts or biased in the opposite direction.</p><p><strong>Conclusions: </strong>Our results suggest that some people with low vision may misperceive motion in a systematic way similar to people with typical vision. However, we observed large individual differences. Future work will aim to uncover reasons for such differences and identify aspects of vision that predict susceptibility.</p>","PeriodicalId":19649,"journal":{"name":"Optometry and Vision Science","volume":"101 5","pages":"252-262"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optometry and Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/OPX.0000000000002139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We aimed to develop a paradigm that can efficiently characterize motion percepts in people with low vision and compare their responses with well-known misperceptions made by people with typical vision when targets are hard to see.
Methods: We recruited a small cohort of individuals with reduced acuity and contrast sensitivity (n = 5) as well as a comparison cohort with typical vision (n = 5) to complete a psychophysical study. Study participants were asked to judge the motion direction of a tilted rhombus that was either high or low contrast. In a series of trials, the rhombus oscillated vertically, horizontally, or diagonally. Participants indicated the perceived motion direction using a number wheel with 12 possible directions, and statistical tests were used to examine response biases.
Results: All participants with typical vision showed systematic misperceptions well predicted by a Bayesian inference model. Specifically, their perception of vertical or horizontal motion was biased toward directions orthogonal to the long axis of the rhombus. They had larger biases for hard-to-see (low contrast) stimuli. Two participants with low vision had a similar bias, but with no difference between high- and low-contrast stimuli. The other participants with low vision were unbiased in their percepts or biased in the opposite direction.
Conclusions: Our results suggest that some people with low vision may misperceive motion in a systematic way similar to people with typical vision. However, we observed large individual differences. Future work will aim to uncover reasons for such differences and identify aspects of vision that predict susceptibility.
期刊介绍:
Optometry and Vision Science is the monthly peer-reviewed scientific publication of the American Academy of Optometry, publishing original research since 1924. Optometry and Vision Science is an internationally recognized source for education and information on current discoveries in optometry, physiological optics, vision science, and related fields. The journal considers original contributions that advance clinical practice, vision science, and public health. Authors should remember that the journal reaches readers worldwide and their submissions should be relevant and of interest to a broad audience. Topical priorities include, but are not limited to: clinical and laboratory research, evidence-based reviews, contact lenses, ocular growth and refractive error development, eye movements, visual function and perception, biology of the eye and ocular disease, epidemiology and public health, biomedical optics and instrumentation, novel and important clinical observations and treatments, and optometric education.