Ji Xu, Han Yao, Tiantian Chi, Huichao Cheng, Wenjie Yue, Biying Liu, Xinrong Zhang, Sheng Li, Baifu Zhang, Yunqing Lu, Ning Liu
{"title":"Compact, low-loss, and high-polarized-extinction ratio terahertz TM-pass polarizer based on a hybrid plasmonic waveguide with a graphene ridge.","authors":"Ji Xu, Han Yao, Tiantian Chi, Huichao Cheng, Wenjie Yue, Biying Liu, Xinrong Zhang, Sheng Li, Baifu Zhang, Yunqing Lu, Ning Liu","doi":"10.1364/AO.520254","DOIUrl":null,"url":null,"abstract":"<p><p>A compact, low-loss, and high-polarized-extinction ratio TM-pass polarizer based on a graphene hybrid plasmonic waveguide (GHPW) has been demonstrated for the terahertz band. A ridge coated by a graphene layer and the hollow HPW with a semiround arch (SRA) Si core is introduced to improve structural compactness and suppress the loss. Based on this, a TM-pass polarizer has been designed that can effectively cut off the unwanted TE mode, and the TM mode passes with negligible loss. By optimizing the angle of the ridge, the height of the ridge, air gap height, and the length of the tapered mode converter, an optimum performance with a high polarization extinction ratio of 30.28 dB and a low insert loss of 0.4 dB is achieved in the 3 THz band. This work provides a scheme for the design and optimization of polarizers in the THz band, which has potential application value in integrated terahertz systems.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.520254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A compact, low-loss, and high-polarized-extinction ratio TM-pass polarizer based on a graphene hybrid plasmonic waveguide (GHPW) has been demonstrated for the terahertz band. A ridge coated by a graphene layer and the hollow HPW with a semiround arch (SRA) Si core is introduced to improve structural compactness and suppress the loss. Based on this, a TM-pass polarizer has been designed that can effectively cut off the unwanted TE mode, and the TM mode passes with negligible loss. By optimizing the angle of the ridge, the height of the ridge, air gap height, and the length of the tapered mode converter, an optimum performance with a high polarization extinction ratio of 30.28 dB and a low insert loss of 0.4 dB is achieved in the 3 THz band. This work provides a scheme for the design and optimization of polarizers in the THz band, which has potential application value in integrated terahertz systems.