Linear systems characterization of the topographical spatial resolution of optical instruments.

Applied optics Pub Date : 2024-05-20 DOI:10.1364/AO.521868
Peter J de Groot, Zoulaiha Daouda, Leslie L Deck, Xavier Colonna de Lega
{"title":"Linear systems characterization of the topographical spatial resolution of optical instruments.","authors":"Peter J de Groot, Zoulaiha Daouda, Leslie L Deck, Xavier Colonna de Lega","doi":"10.1364/AO.521868","DOIUrl":null,"url":null,"abstract":"<p><p>Lateral resolving power is a key performance attribute of Fizeau interferometers, confocal microscopes, interference microscopes, and other instruments measuring surface form and texture. Within a well-defined scope of applicability, limited by surface slope, texture, and continuity, a linear response model provides a starting point for characterizing spatial resolution under ideal conditions. Presently, the instrument transfer function (ITF) is a standardized way to quantify linear response to surface height variations as a function of spatial frequency. In this paper, we build on the ITF idea and introduce terms, mathematical definitions, and appropriate physical units for applying a linear systems model to surface topography measurement. These new terms include topographical equivalents of the point-, line-, and edge-spread functions, as well as a complex-valued transfer function that extends the ITF concept to systems with spatial-frequency-dependent topography distortions. As an example, we consider the experimental determination of lateral resolving power of a coherence scanning interference microscope using a step-height surface feature to measure the ITF directly. The experiment illustrates the proposed mathematical definitions and provides a direct comparison to theoretical calculations performed using a scalar diffraction model.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.521868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lateral resolving power is a key performance attribute of Fizeau interferometers, confocal microscopes, interference microscopes, and other instruments measuring surface form and texture. Within a well-defined scope of applicability, limited by surface slope, texture, and continuity, a linear response model provides a starting point for characterizing spatial resolution under ideal conditions. Presently, the instrument transfer function (ITF) is a standardized way to quantify linear response to surface height variations as a function of spatial frequency. In this paper, we build on the ITF idea and introduce terms, mathematical definitions, and appropriate physical units for applying a linear systems model to surface topography measurement. These new terms include topographical equivalents of the point-, line-, and edge-spread functions, as well as a complex-valued transfer function that extends the ITF concept to systems with spatial-frequency-dependent topography distortions. As an example, we consider the experimental determination of lateral resolving power of a coherence scanning interference microscope using a step-height surface feature to measure the ITF directly. The experiment illustrates the proposed mathematical definitions and provides a direct comparison to theoretical calculations performed using a scalar diffraction model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学仪器地形空间分辨率的线性系统表征。
横向分辨能力是菲佐干涉仪、共聚焦显微镜、干涉显微镜和其他测量表面形状和纹理的仪器的关键性能属性。在明确界定的适用范围内,受表面坡度、纹理和连续性的限制,线性响应模型为在理想条件下描述空间分辨率提供了一个起点。目前,仪器传递函数(ITF)是量化对表面高度变化的线性响应的标准化方法,是空间频率的函数。在本文中,我们将以 ITF 的理念为基础,引入术语、数学定义和适当的物理单位,将线性系统模型应用于地表地形测量。这些新术语包括点、线和边缘展宽函数的地形等效函数,以及一个复值传递函数,它将 ITF 概念扩展到了具有空间频率依赖性地形失真的系统。我们以相干扫描干涉显微镜横向分辨能力的实验测定为例,利用阶梯高度表面特征直接测量 ITF。实验说明了所提出的数学定义,并与使用标量衍射模型进行的理论计算进行了直接比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical router based on a phase-coding multiplexed collinear holographic storage system Single-frame interferogram phase retrieval using a phase-shifting generative adversarial network with physics-based fine-tuning Optimization-Based Approach for High- Fidelity Phase Retrieval from Sparse Interferometric Data: Implications for Industry and Biological Research A high-gain Ho:YLF sub-nanosecond system seeded by a gain-switched laser diode Optical Double-Image Cryptosystem Based on Joint Transform Correlator in Linear Canonical Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1